Radioactivity of some plankton and sea water samples collected in the Taranto Gulf (Ionian Sea)

by

C. TRIULZI* et L. TASSI-PELATI**

*Radiochemistry Service, C.I.S.E., Milan (Italie) **Zoology Institute, Parma (Italy)

Introduction

During the past years a lot of measurements were carried out, by the CISE Radiochemistry Service in connection with the Parma Zoology Institute, to determine the radioactive components present in different marine samples. Results and comments concerning such samples (plankton, sediment water, alghae molluska, ecc.) collected around the Italian coasts on the Ligurian-Tyrrhenian and Adriatic Seas during the 1960 \div 1968 period, have been fully reported in pertinent publications.

To determine important fission products (Sr⁹⁰, Cs¹³⁷, Ce¹⁴⁴, Pm¹⁴⁷, Eu¹⁵⁵, Zr⁹⁵), activation products (Co⁶⁰, Fe⁵⁹, Mn⁵⁴, Sb¹²⁵), and some natural radionuclides (K⁴⁰, Ra²²⁶, Th²³², Th²³⁰, U²³⁸ and U²³⁴) contained always at low levels in such samples, appropriate radiochemical methods of analyses were set up and are described in technical reports.

Recently, continuing such monitoring of the marine environment, our attention was directed to consider some samples coming from the Taranto Gulf. In the framework of the radioecological research performed by the Institute of Zoology of Parma University [1], the opportunity was given of analysing the radioactive contamination of some plankton and sea water samples collected in this zone.

Aim of this work is to determine the main radioactive components of such samples. Therefore, employing specific methods already used ^[2,3], and sligtly modifying them, determinations of the Sr⁹⁰, Ra²²⁶, Cs¹³⁷, Ce¹⁴⁴, Pm¹⁴⁷, Eu¹⁵⁵, Zr⁹⁵, Mn⁵⁴, Sb¹²⁵ contents in such samples were carried out.

Experimental

In Table 1 peculiar data of the considered samples are presented. Collections were performed 1 mile offshore the coast in front of the Sinni river mouth (long 16° 42' 20'', lat 40° 08' 00"). The amount of ash weight on dry plankton is 43.15 p. 100 and 60.25 p. 100 for the T.P1 and T.P2 samples, respectively.

Other information on salinity, conditions of sample collection and preliminary treatment is presented in the main radioecological paper [1].

Separation methods (diagrams of which are outlined in slides 1 and 2 respectively) used to analyse plankton and sea water samples were checked and performed on sample aliquots in a suitable laboratory (at μ Ci level) by using radioactive tracers; radiochemical analyses of such samples were carried out in low level (at pCi) laboratory to avoid any possible contamination.

Measurements of the final sources were made by gamma spectrometry $(3'' \times 3'')$ Nal connected with a 400-channel analyser) and by low background beta device using, where necessary, the beta absorption technique; Ra²²⁶ determinations were obtained by ionization chamber. Separation yields for each considered radionuclide were determined by traced trials, and values are presented in Table 2; yield values for Sr⁹⁰ and for radioactive rare earths were confirmed by determining the initial and the final contents of strontium and of rare earth elements : range data reported are in brackets in Table 2.

Rapp. Comm. int. Mer Médit., 21, 6, pp. 301-303 (1972).

Results

Data obtained concerning the radioactivity content of plankton and sea water samples, are presented in Table 3; results are reported as pCi/g ash and pCi/m³ referred to the collection date. Owing to the very low radioactivity level for some sources it was not possible to determine the radioactivity amount present in them; therefore, some values reported in Table 3 (such as Zr^{95} , Sb^{125} , Mn^{54}) were calculated for both plankton and sea water samples on the basis of the gamma detection threshold for each source and taking into account the separation yields, the analysed sample amounts, and the corresponding decays from collection to measurement date. Moreover, for other radionuclides (Eu¹⁵⁵ and Cs¹³⁷) some radioactivity data resulted to be lower than the beta detection threshold and are reported only as « indicative values ». For this reason, some determinations (quoted as " not res " in table) were not performed.

To complete the 1969 monitoring of the Taranto Gulf — which was the aim of our researches — some sediment samples collected at different depths in front of the Sinni river mouth are also under examination.

As for the plankton and sea water samples, a comparison among the radioactivity data available at present and concerning also other seas is reported in Table 4. In particular, observing the Sr^{90} and Cs^{137} data contained in marine water, it appears that the Adriatic-Ionian samples are slightly more contaminated that the ones collected in the Ligurian-Tyrrhenian Seas. Besides, Ionian sea water samples do not present any reduction of radioactivity, in the period from 1968 to 1969, as in the case of samples from the other seas.

Finally, it is remarkable that the 1968-1969 radioactivity levels (on average) markedly decrease everywhere for all considered radionuclides : $5 \div 6$ times for sea water and $30 \div 40$ times for plankton samples, compared with those collected during the 1963-1964 period [⁴].

	Plankton samples (ashes)		Sea water samples		
Denomination	P.T1 (1)	P.T2 (2)	A.T1	A.T2	
Considered quantities Collection date	5.37 g 10.VII.68	24.55 g 10.XI.69	100 1 10.VII.68	200 1 10.XI.69	
	(mg/g)		(mg/l)		
K concentration Ca » Sr »	11.30 17.05 6.33	14.72 20.35 2.53	439 521 7.9	489 471 8.4	

TABLE 1

(1) High content of zooplankton

(2) High content of fitoplankton

TABLE 2

	Plankton yields %	Sea water yields
Strontium Rare Earths	74 (70÷80)	64 (58÷70)
(Ce, Pm, Eu)	89 (85÷95)	78 (80÷90)
Caesium	93	98
Zirconium	97	
Manganese	93	
Antimony	88	86
Radium (barium)	92	85

302

Radioisotopes considered	Plankton samples (pCi/g ash)		Sea water samples (pCi/m ³)		
	P.T1	P.T2	A.T1	A.T2	
Sr ⁹⁰	0.40	0.16	284	289	
Cs137	\sim 0.15 (*)	not res	not res	302	
Ce ¹⁴⁴	not res	26.5	not res	241	
Pm ¹⁴⁷	not res	4.2	not res	48	
Eu ¹⁵⁵	not res	\sim 0.27 (*)	not res	< 40	
Zr ⁹⁵	< 3.7	< 8.5	not res	not res	
Mn ⁵⁴	not res	< 0.5	not res	< 75	
Sb125	not res	< 2.2	< 390	< 270	
Ra ²²⁶	0.03	0.66	18.4	22.3	

TABLE 3

(*) Indicative value, not confirmed by beta absorption measurements owing to the very low activity of the source.

TABLE 4

			Sr ⁹⁰	Cs ¹³⁷	Ce ¹⁴⁴	Pm ¹⁴⁷	Eu ¹⁵⁵	Ra ²²⁶
SEA WATER pCi/m ³	Ligurian Sea	1967 1968 1969	39.5 144.3, 229* 127*, 187*		29.2 53.1	62.6 64.2	18.7 < 25 —	27.6 66.3
	Tyrrhenian Sea	1968 1969	151* 110*	327* 235		—		
	Adriatic Sea	1968 1969	438* 211*	395* 353*		_		
	Ionian Sea	1968 1969	284, 278* 313*, 289	324* 520*, 302	241	48	 < 40	18.4 22.3
ash								
NK Ci/g)		1967-1968 1968 1969	0.31 0.40 0.16	∼ 0.15 −	4.08	5.31 4.2	< 0.2 ~ 0.27	1.83 0.03 0.66

* Personal communication of Prof. A. A. CIGNA (CNEN - Casaccia)

Références bibliographiques

- SCHREIBER (B.), TASSI-PELATI (L.), MEZZADRI (M.G.), 1971. Radioecological researches in the Taranto Gulf. Rapp. Comm. int. Mer Médit., 21, 6, p. 305.
- CERRAI (E.), PELATI (L.), TRIULZI (C.), 1963. Radiochemical studies for radioactivity determinations in marine plankton. CISE Report. 95,
- SCHREIBER (B.), CERRAI (E.), TRIULZI (C.), TASSI-PELATI (L.), 1964. Radioattività beta totale, contenuto di Sr⁹⁰ e di altri radionuclidi nel plancton pescato nel Mar Tirreno durante la 1a campagna oceanografica della M/N Bannock (sett.-ott. 1963). R.C. Ist. lombardo, (B), 98.

TASSI PELATI (L.), TRIULZI (C.), 1969. — Radioactivity content in some plankton and sea water samples sollected during the period between 1960-68 and their correlations. *Energia nucl.*, *Milano*, **16**, p. 15.