Soluble and Particle-Associated Fallout Radionuclides in Mediterranean Water and Sediments

Hugh D. Livingston, Susan A. Casso, Vaughan T. Bowen and John C. Burke
Woods Hole Oceanographic Institution
Woods Hole, MA 02543 U.S.A.

Summary From measurements in Mediterranean seawater and sediments, 137 Cs, 90 Sr and 239,240 Pu behaved mostly as "soluble" nuclides tracing Mediterranean water movement, whereas 55 Fe and 241 Am behaved more as "particle-associated" nuclides and were relatively rapidly removed to the sediments. Patterns of nuclide distribution within sediments showed depths of penetration in the order 55 Fe > $^{(239,240)}$ Pu, 137 Cs) > 241 Am and were thought to result from biological mixing on nuclides whose arrival rates varied in the same order.

Résumé Après des mesures d'eau de mer et de sédiments méditerranéens, on voit que les inventaires de retombées radioactives 137 Cs, 90 Sr et 239,240 Pu réagissent plutôt comme des nucléides solubles en suivant les movements de l'eau en Méditerranée, alors que le 55 Fe et 241 Am réagissent plus comme des nucléides à "particules associées" et sont transféré relativement rapidement aux sédiments. On pense que les formes de distribution de nucléide à l'intérieur des sédiments avec un mode de pénétration dans l'ordre suivant 55 Fe>(239,240 Pu, 137 Cs)> 241 Am, sont le résultat d'un mélange biologique des nucléides dont le taux d'arrivée varie dans le même ordre.

 $\frac{\text{Text}}{239,240}$ Distributions and inventories of fallout derived 137 Cs, 90 Sr, 239,240 Pu and 241 Am have been measured in Mediterranean sediment cores and water columns from locations representing the major hydrographic regimes which control Mediterranean circulation and biological productivity. 55 Fe distributions and inventories were measured in four sediment cores. These measurements were used to infer the processes which move these nuclides horizontally and vertically in Mediterranean water columns and, for the sedimentable nuclides, which deliver them

to and distribute them within the sediments.

Nuclides which behaved as "soluble" nuclides and are moved with such water transport processes as a) thermoconvective mixing in the N.W. Mediterranean, b) eastward inflow of Atlantic water, and c) westward flow of Levantine Intermediate Water, include 137 Cs, 90 Sr and, as previous studies have indicated, 239,240 Pu (1,2). Comparison of sediment inventories of $^{55}\mathrm{Fe}$ and $^{241}\mathrm{Am}$ with fallout delivery to the Mediterranean and examination of ²⁴¹Am water profiles relative to those of 239,240 Pu lead to the conclusion that these nuclides appear to have behaved as "particle-associated" nuclides and have been moved vertically towards and into the sediments in association with sinking particles. Compared to their proportions relative to plutonium in integrated global fallout, 241 Am and 55 Fe were enriched in the sediments by factors of 4-6 and 6-14 respectively. The lower enrichment of 241 Am than of 55 Fe in the sediments was not thought to result from a differential rate of sedimentation but in consequence of the delay between Pu and ⁵⁵Fe delivery and the in situ production of $^{241}\mathrm{Am}$ by $^{241}\mathrm{Pu}$ decay from Pu isotopes throughout the water columns. Once produced, ²⁴¹Am may well be removed to the sediments at similar rates to those of $^{55}\mathrm{Fe}$ and possibly in association with the same population of sinking particles. The distribution patterns of $^{239,240}\rm{Pu}$, $^{137}\rm{Cs}$, $^{241}\rm{Am}$ and $^{55}\rm{Fe}$ within

The distribution patterns of 239,240 Pu, 137 Cs, 241 Am and 55 Fe within the sediments seem to depend upon the relative rates of arrival of each nuclide and the extent of biological mixing. Sediments underlying biologically more productive water – such as in the Western Mediterranean – showed patterns of deeper nuclide penetration. The ratios of 239,240 Pu and 137 Cs concentrations within sediment cores were generally rather constant. 55 Fe/ 239,240 Pu ratios increased smoothly with distance from the sediment/water interface, generally by about an order of magnitude. 241 Am/ 239,240 Pu ratios, in contrast, mostly decreased with distance from this interface. The patterns of the depth of nuclide penetration, 55 Fe>(239,240 Pu, 137 Cs)> 241 Am are believed to result from the effects of biological mixing, at rates and to depths which vary according to sediment organism populations (3), on sediment nuclide inventories which accumulated at rates which varied in the same order.

RADIONUCLIDE INVENTORIES IN MEDITERRANEAN WATER COLUMNS

mCi/km² (FIGURE IN BRACKETS IS PERCENTAGE FALLOUT DELIVERY)

	WESTERN		MEDITERRANEAN			BALEARIC SEA		S. IONIAN SEA	I AVERAGE
	METEOR 33 36°00'N 04°00'W FEB. 1974 1300 m	CH 121/1363 36°07.8' N 02°46.8' W MAY 1975 1794 m	METEOR 33 36°16'N 02°01' W FEB. 1974 1850 m	METEOR 33 37°00'N 00°01'E FEB. 1974 2660 m	N 37°30'N E 02°00'E 74 FEB.1974	CH 121/1361 41° 12.4'N 5°52.3'E MAY 1975 2612 m	AI 49/1489 39° 58'N 06° 42.6'E MAY 1969 2725 m	CH 121/1359 35° 56.4° N 17° 55.6°E MAY 1975 4076 m	MEDITERRANEAN DELIVERY (37°N)
137 Cs	85	91	88	118	104	97	127	232	111
***	(77%)	(82%)	(79%)	(106%)	(94%)	(87%)	(114%)	(209%)	
⁹⁰ Sr		58				65	90	153	77
		(77%))			(84%)	(117%)	(199%)	
239,24	O Pu	1.07				1.50	1.88	2.63	1.86
		58%				(81%)	(101%)	(141 %)	1
241 Am		0.16				0.17		0.36	0.37
		(42%)				(46%)		(97%)	

RADIONUCLIDE INVENTORIES IN MEDITERRANEAN SEDIMENTS

mCi/km² (FIGURE IN BRACKETS IS PERCENTAGE FALLOUT DELIVERY)

	ALBORAN SEA CH121/10 36°05.9'N 2° 48.1'W MAY 1975 1771 m	ALGERIAN BASIN CH121/8 36°54.5'N 1°36.5'E MAY 1975 2740 m	BALEARIC SEA CH121/6 39°44.2'N 6°21.2'E MAY 1975 2829 m	IONIAN SEA CH 121/4 36°22.1'N 13°44.4'E MAY 1975 448 m	S. IONIAN SEA CH121/2 35° 51.8'N 18°01.7'E MAY 1975 4043 m	AEGEAN SEA CH121/1 38°16.4' N 24°57.2'E MAY 1975 725 m	AVERAGE MEDITERRANEAN DELIVERY (37°N)
¹³⁷ Cs	4.1	6.3	2.3	7.1	3.3	3.2	111
	(4%)	(6%)	(2%)	(6%)	(3%)	(3%)	
239,240 Pu	0.18	0.15	0.06	0.18	0.07	0.06	1,86
	(10%)	(8%)	(3%)	(10%)	(4%)	(3%)	
241 Am	0.21	0.12	_	0.23	0.06	0.06	0.37
	(57%)	(32%)		(62%)	(16 %)	(16%)	
⁵⁵ Fe	16.7	24.8		19.4	5.5		22.3
•	(75%)	(111%)		(87%)	(25%)		

References

- 1. Noshkin, V. E. and V. T. Bowen. "Concentrations and distributions of long-lived fallout radionuclides in open ocean sediments." <u>In</u> Radioactive Contamination of the Marine Environment, IAEA (Vienna), (1973), 671-686.
- 2. Livingston, H. D., V. T. Bowen and J. C. Burke. "Fallout radio-nuclides in Mediterranean sediments." Rapp. Comm. int. Mer Médit. 24, 3, (1977), 37-40.
- 3. Guinasso, N. L., Jr. and D. R. Schink. "Quantitative estimates of biological mixing rates in abyssal sediments." J. Geophys. Res., 80,(1975), 3032-3043.

LIVINGSTON, H.D., CASSO, S.A., BOWEN, V.T., BURKE, J.C.
"Soluble and particle-associated fallout radionuclides
in Mediterranean water and sediments"

Paper presented by H.D. Livingston (USA)

Discussion

- R. CHESSELET: 1. Could you compare with North Atlantic?
 2. To what content is Mediterranean specific in terms of the geochemistry of ⁵⁵Fe, Pu, Am, regarding the North Atlantic situation?
- H.D. LIVINGSTON: 1. When comparisons are made between water and sediment distributions of 55 Fe, 239,240 Pu and 241 Am in the North Atlantic Ocean and the Mediterranean Sea, the data support the conclusion that biogeochemical processes affecting 239,240 Pu and 241 Am distributions differ substantially. ^{239,240}Pu behaves much more as if in true "solution" in the Mediterranean and is distributed mainly by the water circulation. Hence, compared with North Atlantic sediments taken at comparable depths and times, Mediterranean sediments show ^{239,240}Pu inventories which are smaller fractions of fallout delivery to the sea surface. On the other hand, Mediterranean water is depleted and sediments enriched in ²⁴¹Am relative to comparable situations in the North Atlantic. It appears that $^{241}\mathrm{Am}$, when produced in the water column by ²⁴¹Pu decay, is rapidly transferred to Mediterranean sediments at rates considerably faster than those which apply in the North Atlantic.
- 2. It is not possible to argue from our data whether the geochemistry of $^{55}{\rm Fe}$ is significantly different in the Mediterranean and North Atlantic. Comparison of $^{55}{\rm Fe}$ inventories (expressed in terms of fraction of expected

fallout delivery) in Mediterranean sediments with those measured in North Atlantic sediments collected at comparable times and depths, shows that the data for the Mediterranean sediments are not distinguishable from those for North Atlantic sediments. However, for sediments collected at depths shallower than 3000 m, the inventories range around the amounts predicted to have been delivered in fallout. It is, therefore, possible to argue that sinking rates could differ for $^{55}{\rm Fe}$. However, the samples from which this body of data was derived, were collected too long after the input of fallout from atmospheric nuclear weapons testing to be able to distinguish different rates of delivery of $^{55}{\rm Fe}$ to sediments.

R. FUKAI: Comment.

I think only large difference between your data and our data for caesium-137 is found in the Ionian Basin. Whereas your inventory of caesium-137 in this area is approximately 200% of fallout delivery, our inventory shows about 95%. I believe this difference is real and due mainly to the different locations of the stations.

<u>H.D. LIVINGSTON</u>: What are the coordinates and collection date for your Ionian Sea station?

After this last question, other comments follow, which were not recorded.