MIOCENE AND PLIOCENE SEDIMENTS FROM CORE 22 M 37 (MEDITERRANEAN RIDGE, IONIAN SEA)
by
W. HIEKE 1), G. BIZON
2) and C. MÜLLER

1) Techn. Universität München, L.f.Geologie, D-8046 Garching
2) BEICIP, F-92500 Rueil-Malmaison

Geol.-Paläontol. Institut der Universität, D-6000 Frankfurt

Core 22M37 position: $36^{\circ} 10.9^{\prime} \mathrm{N}$ $20^{\circ} 48.5^{\prime} \mathrm{E}$
water depth: about $3,200 \mathrm{~m}$ length: 106 cm

Description:

Rapp. Comm. int. Mer Médit., 28, 4 (1983).

Fig. 1
but not all of them contain nannoplankton. Remarkable amounts of plant debris.

The remaining 10% of the clasts are siltstones, finesandstones and foraminifera sandstones
 stones and foram sandstones are rich in carbonate.

At about 84 cm core depth there is a thin irregular lense of finesand consisting mainly of quartz and feldspars.

In the upper part of the breccia occur light gray clasts of a smaller degree of lithification than the claystones have: 35 \% carbonate, smaller content of chlorite and smectite than in the claystones.

Age determinations:

Claystones: Nanno: NN 9 (Upper Serravallian Lower Tortonian)
whole section of the breccia without discriminātion of components and matrix:

Forams: N 14 (Upper Serravallian)
light_gray_clasts:
Fōrams: MPl 4 (Upper Zanclean) Quaternary
Nanno: NN 11 ? (not younger than Miocene)

In the sample of the whole section of the breccia a benthic foraminifera fauna has been found too. It indicates neritic conditions with the exception of Osangularia culter the upper limit of which is about $500-700 \mathrm{~m}$. To the neritic zone belong as well bryozoans.

Interpretation:

We interpret the observations from core 22 M37 as follows: The Serravallian sedimentary sequence from which the breccia originated may have consist of mud and interccalated silt, finesand and foraminifera layers. This is in good agreement with the lithology of the Early to Middle Miocene sediments of DSDP Sites 126 and 377. The terrigeneous material as well as the neritic fauna must have been transported by turbidites. In the present morphology (Fig. 1) no turbidites of normal dimensions coming from the neritic zone could reach the core position. Therefore, we have to conclude that during Middle Miocene time the morphology was much more uncomplicated than today, i.e. a direct slope from the coast to the present core position must have existed.

The breccia may have originated during Quaternary time. At that time, sediments of Serravallian, Tortonian, Messinian,

Pliocene and Lower Quaternary age must have been exposed at the sea floor to have been able to slide one upon the other.

