TRANSFORMATION OF LEAD(II) SALTS AND HYDROCERUSSITE SOLUBILITY IN SEA WATER M. Marković, H. Bilinski, and M. Luić "Rudjer Bošković" Institute, Zagreb, Yugoslavia

Summary

The precipitation of lead(II) salts in a seawater has been investigated. 2 PbCO₃·Pb(OH)₂(s) was found to be the most stable solid phase and its solubility product in a seawater has been determined.

Résumé

On a examiné la précipitation de plomb(II) sels dans l'eau de mer. On a trouvé 2 PbCO₃·Pb(OH)₂(s) la phase solide la plus stable et on a déterminé son produit de solubilité dans l'eau de mer.

This work is a continuation of our earlier studies on solubility of lead salts in electrolyte solutions with special interest to determine the most stable and least soluble lead salt in a seawater. Nriagu considers chloropyromorphite $(2Pb_5(PO_4)_3Cl)$ as the most stable phosphate solid phase in the environment. Our earlier calculation of solubility of chloropyromorphite for conditions in Northen Adriatic seawater ($[Pb]_{sol}=4.7 \ 10^{-9}$ mol dm⁻³) was in excellent agreement with the experimental value for soluble lead in that region, determined by Branica et al.: $[Pb]_{sol}=2.8 \ 10^{-9}$ mol dm⁻³. Jedwab detected individual particles of laurionite (Pb(OH)Cl) among particulate matter filtered from Atlantic and Pacific deep water samples. A series of precipitation experiments was performed in a seawater to follow transformation of lead salts under

Rapp. Comm. int. Mer Médit., 28, 7 (1983).

these conditions. Solid phases formed at various time intervals were identified using X-ray diffraction patterns. The precipitate formed within 10 minutes consists of phosgenite ($PbCO_3 \cdot PbCl_2$) and of an unidentified compound with three strongest lines: d=3.55, 2.63, 2.11 Å. In the time interval of 10 to 20 minutes hydrocerussite ($2PbCO_3 \cdot$ $Pb(OH)_2$) and cotunnite ($PbCl_2$) predominated while after 1 to 30 days hydrocerussite exists as the most stable solid phase.

The concentration of soluble lead in a seawater in equilibrium with hydrocerussite was experimentally determined as $[Pb]_{sol}=5.8 \ 10^{-6} \text{mol dm}^{-3}$, at pH=7.90±0.05. Solubility product of hydrocerussite in seawater was determined using:

- concentration of soluble lead and the pH determined in this work ;
- concentrations of anionic components of seawater (OH, Cl⁻, SO₄²⁻, CO₃²⁻, HCO₃⁻, HPO₄²⁻) and corresponding equilibrium constants K_n (L) for lead complexes with these anions (L) taken from literature according to the equation:

 $K_s = ([Pb]_{sol}^3 [Co_3^{2-}]^2 [OH]_2) / (1 + \sum_{n} (L) [L]^n)^3$ The calculated values are: log $K_s = -41.5 \pm 0.5$ (at I=0.7 mol dm⁻³) and -42.3 ± 0.5 (at I=0.53 mol dm⁻³). These values are somewhar higher than the values of solubility products determined earlier at I=0.3 mol dm⁻³ (log $K_s = -43.77$) and at I=0.1 mol dm⁻³ (log $K_s = -44.8$), what one expects for higher ionic strengths.

166