ACCUMULATION KINETICS OF PHOSPHATES BY ULVA RIGIDA UNDER THEIR DIFFERENT CONCENTRATIONS

G.G. Polikarpov and N.N. Tereshchenko *

Institute of Biology of Southern Seas, A.S. Ukr. SSR, Sevastopol, 335000, USSR

<u>Summary</u>. The field of phosphates concentrations in the environment, in which an algae has the higher ability to accumulate of phosphorus, was found out on the bases of study of accumulation kinetics of phosphates by <u>Ulva rigida</u>.

Study of phosphorus metabolism kinetics by algae and its dependence upon different environmental factors is important for mariculture development as well as for problems of self-purification of marine environment.

Influence of phospahtes concentrations $(400/ugP \cdot 1^{-1} \text{ and } 25/ugP \cdot 1^{-1})$ in environment on the <u>Ulva</u> growth was clarified quantitatively (1). Concentration factors of phosphates of <u>U. rigida</u> under their natural concentrations, natural lightning and darkening were equal to $3 \cdot 10^3$ (on the dry weight of algae) (2).

Table 1 Concentration factors of phosphates by U. rigida Ag. under different phosphorus concentrations in the medium (the width of confidence interval was not more than 10% of absolute value of a mean). CF concentration factors of phosphates; t - time, days; C_i - concentrations of phosphates in the medium, ug P·1⁻¹.

F	CF										
t	Cl	°2	с ₃	C ₄	с ₅	C6	с ₇	C ₈	C ₉	C ₁₀	C ₁₁
-	10	20	30	50	100	150	200	400	1000	1500	2000
0,15	185	208	212	301	322	304	250	221	195	116	45
1 2	203. 307	263 365	294 409	547 953	922	594	419 663	377	270	122	98
2	315	305 396	409	953 1873	1073 1471	993 1371	833	551 697	292 301	159 216	199 205
5	321	403	438	2119	1926	1592	1065	756	323	253	228
7	323	406	450	2200	2030	1701	1072	786	330	271	231

At present work kinetics of phosphates accumulation under their concentrations in the medium 10 up to $2000/ugP\cdot1^{-1}$ was investigated with radioactive indicators and addition of stable phosphorus (3). In the concentrations field uo to 150 up to $150/ugP\cdot1^{-1}$ concentration factors (CF) were increased to a certain extent at first hours after phosphates injections, however CF were decreased under higher phosphates concentrations in the environment (Table 1).

Rapp. Comm. int. Mer Médit., 29, 7 (1985).

Maximum values of CF were observed in the concentrations 50-150 $/ugP\cdot1^{-1}$ during increased exposition of time, namely: CF became one order of magnitude higher than such at $10-20/ugP\cdot1^{-1}$. Increasing of phosphate concentrations up to $1000-2000/ugP\cdot1^{-1}$ leads to decreasing of CF till the steady level (Table 1).

Obtained results characterize adaptation possibilities of U. rigida in telation to environmental phosphates and indicate that U. rigida has a higher capacity of phosphate accumulation out of the environment at concentrations $50-500/ugP\cdot1^{-1}$, having the maximum at $50-150/ugP\cdot1^{-1}$.

References

- 1. A.G. Korotkov Ekologiya morja (1982), 10, pp. 61-65.
- 2. G.G. Polikarpov Trudy Sevastop. biol. stantsii, (1960),<u>13</u>, pp. 296-298.
- N.N. Tereshchenko and V.N. Egorov Abstr. of sci. pract. conf. devoted to 200 aniversary of the town-hero Sevastopol, (1983), pp. 185-186.

* Paper presented by G. Kniewald (Yugoslavia) due to absence of authors.

74