BIOKINETICS OF ¹³⁷Cs IN THE MUSSEL *Mytilus galloprovincialis* LAMARCK MEASURED UNDER CONTROLLED ENVIRONMENTAL CONDITIONS

Olga Jelisavčić Center for Marine Research Rovinj, "Rudjer Bošković" Institute, 52210 Rovinj, Yugoslavia

Abstract. 13 The rate of uptake and loss, and the quantity of retained Cs in mussels were studied under controlled environmental conditions. The following results were obtained: (a) increased concentrations of stable cesium (0.22 and 12,20 μ mol 1, respectively) increased the rate of uptake of to 15%. The same concentrations of stable cesium decreased the rate of 13Cs loss from the mussel; (b) during loss, the percentage of whole body 13Cs retained was positively correlated with the length of exposure time to Cs:1 (c) EDTA concentrations of 10^{-3} , 10^{-4} , 10^{-5} , 10^{-5} mol 137 did not affect the rate of uptake nor the quantity of Cs retained by mussels.

Résumé. Accumulation, perte, et rétention de 137 Cs ont été étudiées chez Mytilus galloprovincialis dans des conditions environnementales. Les résultats suivants ont été obtenus : (a) L'augmentation des concentrations en Césium stable (respectivement : 0.22 et 2.20 µmol 1^{-1}) entraîne une augmentation de 15 % du taux d'accumulation. Ces mêmes concentrations diminuent le taux de perte de 137 Cs chez les Moules. (b) Pendant la perte, le pourcentage de 137 Cs retenu dans le corps de l'animal est proportionnel au temps d'exposition à ce même 137 Cs. (c) Des concentrations en EDTA (10^{-3} , 10^{-4} , 10^{-5} , 10^{-6} mol 1^{-1}) n'ont pas affecté les taux d'accumulation, ni les quantités de 137 Cs retenues par les Moules.

INTRODUCTION

Radioactive cesium (137 Cs) enters the northern Adriatic primarily as stratosphaeric fallout but also in effluent from some nuclear power plants. Radiocesium is a potentially dangerous contaminant because of its long half-lie and relatively strong biochemical binding in marine organisms. Mussels are widespread and are a very suitable test organism for the evaluation of radioactive pollution. Mussels are also very important in the fisheries industry. If mussels accumulate radiocesium above the allowed concentrations, they could become dangerous to man through food chain contamination.

The role of cesium in the physiology of marine organisms is largely unknown. It is probably concentrated by animals because of its chemical similarity to potassium (Bryan, 1962, 1963). Bivalve molluscs accumulate most of the radioactive and stable cesium in soft tissues (99.7 %) with only a small amount being incorporated in the shell (0.3 %) (Jelisavčić, unpublished data).

MATERIALS AND METHODS

Mussels (Mytilus galloprovincialis Lamarck) for all experiments were taken from commercial areas at Pomer, near Pula. Before the experiments the mussels were acclimated to laboratory conditions (temperature, aeration, salinity). Twenty specimens were used for each experiment, including one control group. The size of mussel varied between 4 and 4.27 g wet. Cesium ions in the chloride form (CsCl₂, Chemapol-Praha, Czehoslovakia), and EDTA (disodium ethylene diamine tetraacetic dehydrate, Geigy Industria) Chemicals) were used.

TABLE I The effect of stable cesium on the uptake of 137Cs by the mussel Mytilus galloprovincialis Lam. Cs concentration is presented as relative radioactivity (RA in % of standard) and standard deviations (± s.d.).

Controlled parameters	Days	Control	G R 0 U - P 0.22 μmol 1 - P	S 2.20 µmol 1 ⁻¹
MUSSELS				
RA (in % RT-1) ± s.d.	1 2 3 5 7 10 15	1.59±0.14 1.94±0.76 2.31±0.77 2.57±0.97 2.68±0.90 2.99±1.01 3.08±1.00	1.82 \pm 0.55 2.26 \pm 0.68 2.58 \pm 0.83 3.02 \pm 0.87 3.09 \pm 0.92 3.30 \pm 1.11 3.51 \pm 1.03	1.73±0.47 2.27±0.61 2.60±0.78 2.76±0.94 2.98±0.93 3.11±0.92 3.35±0.96
BASIN Salinity Temperature (°C) pH A/ml (in % RT-1) A bound to particles > than 0.45 µm (in % RT-1)	f ₁	37.6x10 ⁻³ 20 7.88 1.75 0.5	37.6x10 ⁻³ 20 7.93 1.73 0.5	37.6x10 ⁻³ 20 7.93 1.72 0.4 0.2

High specific activity Cs was obtained from Amersham (0.0060 to 0.074 Bq 1 seawater, carrier free in 1 N HCl). In the uptake and loss experiments Cs was followed in individual organisms. Radiometric determination of Cs was made with a Nuclear Chicago scintillation counter, attached to an automatic sample changer, scaler and printer. Radioactivity is 37 eported as specific activity in percentage of a standard (13 Cs RT-1 model, Nuclear Chicago Corporation, 0.13 Bq activity).

TABLE II The effect of stable cesium on the loss of 137 Cs from the machine $_{galloprovincialis}$ Lam. The concentration of 137 Cs is presented activity (RA in % of standard) with standard deviations ($_{\pm}$ retention (%) related to the point of reference (100 %).

Measured	Days			G R O U P S			
parameters	-	Control	Rel.Ret.	$0.22 \mu mol 1^{-1}$	Rel.Ret.		
MUSSELS	And the second s	·					
RA (in % RT-1)	0	3.08±1.00	100 %	3.51 ± 1.03	100 %		
± s.d.	1	1.56±0.74	50.6	2.04±0.89	58.1		
	2	1.33±0.63	43.2	1.64±0.71	46.7		
	3	1.06±0.49	34.4	1.36±0.64	38.7		
	5	0.84 ± 0.37	27.3	1.09 ± 0.44	31.0		
	7	0.66 <u>±</u> 0.28	21.4	0.87 <u>±</u> 0.34	23.1		
	10	0.55±0.21	17.8	0.66±0.30	18.8		
	15	0.38±0.15	12.3	0.48±0.20	13.7		
	20	0.29±0.11	9.4	0.34±0.16	9.7		
	25	0.24±0.09	7.8	0.27±0.12	7.7		
	30	0.19±0.09	6.2	0.21 ± 0.10	6.0		
BASIN		_					
Salinity		37.6×10^{-3}		$37.6x10^{-3}$			
Temperature		21 °C		21 °C			
рН		8.02		8.04			

TABLE III The loss of 137 Cs in the mussel $Mytilus\ galloprovincialis\ Lam.$ after and longer periods of uptake. The concentration of 137 Cs is present relative activity (RA in % of standard) with standard deviations (\pm with the retention (%) related to the reference point (100 %).

Measured parameters		G R O U P S							
	Days	16 days uptake of 137 _{Cs}		5 days uptake of 137 _{Cs}		1 day uptake ¹³⁷ Cs			
MUSSELS	0	4.94 <u>+</u> 0.60	100 %	3.73±0.67	100 %	2.36±0.16	10		
RA (in % RT-1)	1	2.70±0.51	54.6	1.58±0.38	42.4	0.62±0.12	2		
± s.d.	2	2.15±0.41	43.5	1.18±0.32	31.6	0.42±0.08	1		
	3	1.78±0.44	36.0	0.96 ± 0.24	25.7	0.32 ± 0.06	1		
	5	1.42±0.27	28.7	0.63 ± 0.13	16.9	0.20±0.05			
	7	1.15±0.23	23.3	0.49 ± 0.10	13.1	0.16±0.04			
	10	0.92±0.19	18.6	0.37 ± 0.05	9.9	0.10 ± 0.03			
	15	0.73±0.16	14.8	0.28 ± 0.04	7.5				
	20	0.59±0.14	11.9	0.21 ± 0.03	5.6				
	25	0.49 ± 0.13	9.9	0.17 ± 0.03	4.6				
	30	0.42 ± 0.11	8.5						
BASIN	•			_					
Salinity		36.4×10^{-3}		36.4×10^{-3}		36.4×10^{-3}			
Temperature		16-20 °C		16-20 °C		16-20 °C			
рН		7.85-8.06		7.85-8.06		7.85-8.06			

TABLE IV The effect of EDTA on the uptake of 137 Cs in the mussel Mytvincialis Lam. The concentration of 137 Cs is presented as vity (RA in % of standard) with standard deviation ($_{\pm}$ s.d.)

Measured parameters	Days	Control	10 ⁻³ M/1	D-4 T A	10 ⁺⁵ M/
MUSSELS					
RA (in % RT-1)	1.	1.99 [±] 0.18	1.91±0.18	1.99 [±] 0.12	2.03 [±] 0.
± s.d.	2	2.64 [±] 0.17	2.45 ± 0.25	2.49 [±] 0.10	2.46 [±] 0,
	3	2.96±0.20	2.81±0.36	2.77 [±] 0.12	2.80 [±] 0.
	5	3.29 [±] 0.18	2.94±0.27	3.05 [±] 0.17	3.10 [±] 0.
	7	3.78 [±] 0.27	$3.35^{\pm}0.41$	3.42 [±] 0.17	3.34 [±] 0.
	10	3.85±0.33	3.36±0.28	3.64 ± 0.21	3,57±0.
	15	4.19 [±] 0.28	3.42 [±] 0.30	3.83±0.31	$3.80^{\pm}0$.
BASIN					
Salinity		36.7×10^{-3}	36.7×10^{-3}	36.7×10^{-3}	36.7x10
Temperature		26 °C	26 °C	26 °C	26 °C
рН		8.03	7.93	7.99	8.02
A/ml		1.43	1.40	1.43	1.39
A bound to particles > than	f	0.6	0,6	0.5	0.6
0.45 μm (in % RT-1)	f ₂	0.6	0.4	0.5	0.6

RESULTS

The concentration of stable cesium in northern Adriatic seawater varies from 0.0018 to 0.0022 $_{\rm u}$ mol 1 (Marsel and Popović, pers. comm.). Two concentrations of stable cesium were used in the experiments: 100 and 1000 times higher than those found in seawater (0.22 and 2.20 $_{\rm \mu}$ mol 1 respectively). The effect of these concentrations on the rate of uptake and loss of 13 Cs in the mussel ${\it Mytilus\ galloprovincialis\ Lam.}$ was followed (Table I and II). These concentrations of stable cesium induced higher rates of radiocesium uptake as well as the quantity of retained radiocesium in the mussel. This was most pronounced at the lower stable cesium concentrations. The loss of 13 Cs in running seawater was correlated

The loss of ''Cs in running seawater was correlated with the length of exposure time to radiocesium (Table III). The group of mussels exposed for just one day to radiocesium in running seawater was decontaminated in about ten days. Retention in this group after 10 days of the experiment was 4.24 %. In the group of mussels which was exposed to 'Cs for 5 days, the retention of 'Cs after 10 days was 9.92 %. In the group of mussels exposed for 16 days to radiocesium, retention after 10 days was 18.6 %.

The EDTA complex in the concentration range of 10^{-3} , 10^{-4} , 10^{-5} , 10^{-6} mol 1^{-1} did not seem to affect the uptake of 137Cs by mussels. There was no statistically (0.90 < P < 0.80; 0.80 < P < 0.70; 0.80 < P < 0.70; 0.70 < P < 0.360) significant differences between the concentrations of Cs in control groups and in groups treated with EDTA (Table IV).

REFERENCES

- Bryan, G_{1} %7, 1962: Potassium metabolism and the accumulation of 187Cs by decapod crustacea. J. Mar. Biol. Ass. U.K. 42:199-241.
- Bryan, G.W., 1963: The accumulation of radioactive caesium by marine invertebrates. J. Mar. Biol. Ass. U.K. 43: 519-539.