B-IV3

CRUSTACEAN FISHERY IN GREEK WATERS, 1928-1981

National Center for Marine Research, Athens (Greece)

RESUME : Une revua des captures des crustacés dans les eaux Grecques en 192日-81 est entreprise tans ce etude. La capture moyenne annuelle a
gugmenté de 175 tns en $1928-39$ à 1260 ths en $1964-81$. D, ailleurs, les augmenté de 175 tns en $1928-39$ à 1260 tns en $1964-81$. D' ailleurs, les
variations a long terme sembla être liées plutot aux facteurs naturels variations a long terme sembla
qu' aux facteurs anthropogénes.
ABSTRACI : The crustacean fish
ABSIRACI : The crustacean fishery in Greek waters in $1928-1981$ is reviewed. The mean annual crustacean catch rose from 175 tonnes
(shrimps- 54.4%) in $1920-39$ to 1260 tonnes (shrimps- 44.4%) in $1954-$ B1 as the result of the incrsased effort and efficiency of the fleet. horeover, the variations in the crustacean catches seem to be related to natural rather than anthropogenic effects.
INTRODUCIION: Although the potential of crustacean in the Mediterranean Sea amounts some 50,000 ths (1), the mean (1975-81) work, the crustacean fishery in Greek waters for $1328-81$ is reviewed

MATERIAL AND METHODS : Catches of crustaceans in Greek waters have been recorded on a monthly basis through the lacal custom authorities
since 1928 , with a gap in the record between 1940 and 1963 (3 , 4).

RESULTS AND DISCUSSION : Two thousand tonnes of crustaceans, caught in Griek waters, wera landed during 1928-1939, (Table 13. The mean landings, comprising the 54.4% (95.4 tns), whereas "other crustacean" shared 45.6\% (80.9 tins). The tatal production of crustacean in $1964-81$ amounted 48,324 tonnes, $22,682(46,9 \%$) of which were fished in Greak waters and 25,642 (53.1% in the Atlantic ocean and the north
African coast. The mean annual African coast. The mean annual crustecean cetch in Gresk waters
was 1,260 tonnes, representing 2.2% was 1,260 tonnes, representing 2.21 landings [$-58,950$ tns, (5)] fished in Greek waters and 5% of the mean (1975-81) Meditarranean crustacean catch $[-21,000$ tns, (2)]. The proportion of shrimps (44.4%) owar than that in 19eb-1939.
Greak waters) axhibited ches (in variations, with maxima in $195 s$ 1973 and 1978 and minima in 1965 1971, 1975 and 1380 (Fig.1). The landings of shrimps incrassed from a low in 1565 to a maximum in 196s, and gradually decilined ever since, hand erhibited on ' onposite other than that of shrimps.

han

1928-1939 to 1964-1981 increase in the mean crustacean catch from ishing effort [mean number of boats was 579 in with the rise of the 1151 in 1964-1981 (5)], the improved efficiency of fishing tools in ecent years and changes in the length of the fishing season.
The fluctuation in the catches in 1964-1981 does not seem to be
related ta a varying fishing effort. Irawlers and boats invalved in related to a varying fishing effort. T
the inshore fishery (-seiners and "other boats") contributed about 40% and 60\% of the total 1959 an yield unpublished data). The number of "other boats" (and corresponding eatches) with an engine lower than 20 HP, however, are not recorded from 1970 and onwards (5). Hence the drop in the catches of total crustacean and shrimps after 1969 (Fig.1) may be of the recorded boats. "Other crustacean" catches da not seem to be affected by that decline (Fig.1). For the years following 196s, however, catches fluctuate greatly (Fig. 1), in contrast to the gradual increase of the number of trawlers, boats involved in the inshore fishery and total (5). Hence it saems that factors flest than anthropogeems that factors other long term changes in the catches
It has been extensively shown that

Fig.1. Total (1) and "other" crustacean (3) and shrimp (2)
catches in
Greek waters, reatly been extens the namely, that of lobsters Ce.g. in Maine (6), Newfoundland (7) 8) and Quebec (9)], crabs [e.g. in the Barents Sea (10, 11), Newfoundland (8) and 5 . Catailina Island (12)] and shrimps. [e.g. Bear Island (11)]. Unfortunataly, there is not any relevant information for the Mediterranaan Sea. It was pointad out (15), however, that hydrological variations, among other factors, may be responsible for the extinction of the red shrimp fishery in the Ligurian Sea after the 1950's.
natural and anthrapogenic changes, so that future research buth oriented towards monitoring, on an annual basis, the biological catch per fishing effort, extent of spawning and nursery grounds, distribution and abundance of larvae etc) and abiotic enviroment (nutrients, T, Soloo, direction and intensity of currents etc). This will ultimately contribute to the assessment of the relative impact of hatural and anthropogenic changes on marine populations, and, hence
$\frac{\text { REFER }}{15}$
1 FAD, 1981. FAD Fish, Ser, 15 .
3 Greek Fisheries Statistics, 1934-1940. Gen. Stat. Ser., Secti
5 Stergiou I. K., in press. Iech, Cons. Stock Ass. East, Med. FAD

7 Templeman W. and Fleming M., 1953. ICNAF Ann, Proc: 3: p 79-86.
B Ennis G. P., 1983, Can. Tech, Rep. Fish. Aquat. Sc. $1138: 19 \mathrm{pD}$
10 Berg L. 5., 1935. Zoperographica 3: pp 1-15, 30: pp 856-859.
10 Berg L. S., 1935 . Zoogeographica, 3: pp 1-15

13 Relini O. L. and G. Relini, 1985. FAO Fish, Rep., 336:pp 99-106.

B-IV4
observations on Parapandalus narval (Fabricius, 1787)
(Crustacea, Decapoda, Pandalidae) from Ahodos Island (Greece)
M. Thessalou-legaki, a. frantzis, k. nassiokas and s. hatzinikolaou Zoological Laboratory, Department of Biology,
University of Athens, Panepistimioupolis, Athens (Greece)
RESUME
La population de Parapandalus narval a montre une forte zonation verticale qui est en corrélation avec le sex ratio, avec la taille des femelles ainsi qu' avec la proportion das femelles ovigeres.

The presence of Parapandalus narval in Eastern Mediterranean has bean verified during two diving surveys (October 1984, January 1985) in submarine caves of Rhodos. This paper deals with preliminary observations on the bialogy of the species in relation to depth (August 1985, In the catches, twa species were found: Parapandalus narval and Plesionika edwardsii, The percantage of Plesionika edwardsii is increasing as depth increases (Fig. IB). This species is not found in 5 m . and only one specimen (in a total of 259 shrimps was found in 80 m .
Table 1 summarizes our data: the percentage of Plesionika eduardsii Table I summarizes our data: the percentage of Plesionika eduardsii tion of females in the population (sex ratio), the mean carapace length for males and females and the percentage of the ovigerous females in the females are recorded according to depth.

TABLE I

$\begin{gathered} \text { gepth } \\ \mathrm{m} . \end{gathered}$	P.e.	Parapandalus narval			
		$\begin{aligned} & \text { sex } \\ & \text { ratio } \end{aligned}$	mean CI \pm SD		\% DVig.
			malas	Females	Females
5	0.0	1.00	-	9.84 ± 1.45 ($\mathrm{N}=1493)$	59.73
80	0.4	0.75	11.93 ± 1.32 ($\mathrm{N}=64$)	$13.20 \pm 1.94(N-194)$	76.80
140	5.6	0.48	12.65 ± 1.25 ($\mathrm{N}=103$)	$15.25 \pm 2.04(N-94)$	90.42
220	27.4	0.02	$11.98 \pm 1.42(\mathrm{~N}=44)$		

No juveniles of P. narval were collected. Transitional males were in relatian to depth. There is a clear dependence of sex ratio on depth ($x^{2}-172.98$ P<<0.001 for the propotions of males and famales). All propo tions of females in the total population of each depth have a statistical ly high difference from each ather ($P<0.001$). In 5 m . depth there are only females while the figure is totally reversed in the 220 meters with only one female.

For the females the non parametric ANDUA (Kruskal-wallis test by ranks of CL velues) showed a very high significance difference for. ($\mathrm{P}<0.001$). rence of mean $C L$ with lower significance ($0.001<P<0.005$) which is due to the sample of 140 m . that has greater mean CL (at 0.05 level) om these of 80 and 220 m . which have equal mean CL.

The difference of female size according to depth is reflected on the percentage of the ovigerous females which increases according to depth almost linearly (Fig. IC). The propotion of ovigerous females from each other (P<O O01). The smallest ovigerous female observed has a CL-7.85 mm. The overall ovigerous females are 74.4% of the total femeles

C

Fig. I. Change according to depth: A. Sex ratio (Females to all individuals) of P. nerval, B. Percentage of Plesionika edwerdsii in the catch (black: Plesionika edwardsii, white: Parapandalus narval) and
C. Percentage 0 of $0 v 1$ gerous females of P. narval.

The differences in the size of females and in the sex ratio of $\frac{P}{a}$ narval in relation to depth are so intense that we could speak of iids as Pandalus montagui (Allen 1963a, 1966), Heterocarpus ensifer (King 1980, 1981) and Heterocarpus sibogae (King 1984).
P. As far as we know, very little is known about the life history of P. narval. Crosnier and Forest (1973) report that the juventles are caught by pelagic nets while the adults are benthic. Our data although come in contrast with the idea that P. narval could have a similar life history pattern to that of other Pandalids (protandrous hermaphrodites with seasonal migrations3. If this suggestion is true, then the females of the 5 m . depth could be primary females and the males have not yet become transitional. Cartainly we consider all samples as components of the same population and a further research must be undertaken over the whole range of depth distribution for a sufficient period of time.

REFERENCES

[^0]
[^0]: Allen, J. A., 1963a. J. mar. biol. Ass. H. K., 43, 665-682.

 - Allen, J. A., 1966. DCeañgr. Mar. biol. Ann. Rev. 4,247
 - King, M. G., 1980. Rep. Inst. Mar. Resour., Univ. South Pacific, Fiji, 1-25.
 - King, M. G., 1981. Mar. Fish. Rev., 43, (12), 10-17.
 - King, M.

