V-IV 10

contribution to the biology of bass Dicentrarchus labrax L. (Pisces, Serranidae) in the Egyptian Mediterranean waters

```
E. WASSEF', N. DOWIDAROO, A. EZZAT'OO and G. EL-EMARY'
```

\therefore Institute of Oceanography and Fisheries, Alexandria (Egypt)

- Faculty of Science, Oceanography Department, Alexandria University, Alexandria (Egypt)
$\frac{\text { ABSTRACT }}{\text { Age de }}$
Age determination and annual growth of both length and weigion and mea Dicentrarchus labrax L. were made from the examinatand scale-radius was found to be linear and the equation repres enting this relation is derived.Annulus formation on bass scales takes place in between January, 27 and February, 22 each year. Males bass do not grow as fast as females and they tend to be shorterlived. Maximum values of length and weight attained by bass during their first seven years of life were calculated using the vonBertalanffy's equation.

ILLUSTRATIONS

REFERENCES
Barnabé, G., Exposé synoptique des données biologiques sur le loup 1980 ou bar Dicentrarchus labrax (Linne,1758). Synop. FAO Pêches,126:70 p.
Kelley, D. Bass population and movements on the west coast of the 1979 U.K.j,Mar, Biol.Ass.U.K.,59 : 859-936.
Kennedy M., and Fitzmaurice,P., The biology of bass Dicentrarchus 1972 labrax, in Irish waters.Ibid,52 : 557-97.
Ottaway, E., and Simkiss, K., A comparison of traditional and novel of 1979 estimating growth rates from scales of natural populations of young bass Dicentrarchus labrax. Ibid,59 :49-59. Rafail,S., Investigation on Sciaenidae and Moronidae catches and 1971 on the total catch by beach seine on the U.A.R Mediter ranean coast. Etud,Rév,CGPM/Stud.Rev.GFCM,48:1-26.
Wassef, E., Dowidar, N., Ezzat, A., and El-Emary, H., Food habits of seabass 1985a Dicentrarchus labrax L. Off Alexandria. Comm.Sc. Develop. Res. 10 (92) : 44-56.
Wassef,E., Ezzat, A., Dowidar, N., and El-Emary,H., Fisheries of bass 1985b Dicentrarchus labrax L. in Egypt.Ibid,12(127):128-44.

V-IV11

AN ATTEMPT OF GRONTH PARAMETER COMPUTATION for some commercial species of the Tyrrhenian Sea
M. WURTZ and G. MATRICARDI

Istituto di Anatomia Comparata, Università di Genova, Via Balbi 5, Genova (Italia)

Growth parameters expressed in the Von Bertalanffy (1938) form are of great importance for stock asseasment model computation. Because of the lack of these data for many tyrrhenian commercial apeciea, it would be useful to complete the availabla information. Length/ frequency distributiona repreaent the data bame for this work. For the Ligurian Sea data have been obtained from Bilio (1969) for Merluccius merluccius; from Froglia (1984) for Mullue berbatua, Spicara flexuosa and Boope boope; from Fanciulli and Orai (1979) for phycia blennioldes. For the Higher Tyrrhanian Sea, from Frogila (1984) for Diplodus annularia. For the Central Tyrrhenian Sea, from Ardizzone (1982) for Mullus barbatus and from Froglia (1984) for Trigla lucerna and Solea vulgaris. Amyptote length (L.inf.), K and T_{0} have been estimeted treating data by smoothing techniques (i.e. running average), by computing the mean length of each age-claas by decomposition of the length frequenciea into their gausaian componenta (Bhattacharya, 1967) and finally by methode of forced Gulland an Holt (1959) plot or walford (1946) plot an reported in Pauly (1983) and Ricker (1975). Two estimationa of T_{0} on annual basie are reported: the former (TO) have been obtained by the empirical relationahip given by Pauly (1983); the latter (TO) by the equation given by Ricker (1975). Reaulta are ahown in table 1. When poasible, male (M) and female (F) have been analyzed separately. Totel length (TL) or standard legth (SL) are given in cm. It must be noted that figurea correaponding to $T O$ might repreaent a better eatimate than TO. In fact TO, has been derived from the regreasion of $Y=(L . i n f .-L t$. against $X=t$ (where teage and Lt.xlength at age t) (Ricker, 1975) for each apecies. For the resolution in the gauaian componenta of each data set by Bhattacharya method, the correlation coafficienta of the atraight linea identifying each component were included between 0.73 and 0.99 (with more than $92 x$ included between 0.85 and 0.99). The methoda employed have given good reaults also when frequency distributions were obtained from relatively amall samplea; of course thia in true when the age compoaition of the population ia well repreaented in the ample. For example, table 2 ahowe a comparison between age/length key of Merluccius merlucciua, obtained by Aldebert (Oliver, 1983) through otolitha reading, and maan length seriea obtained from our computation. In general the resulta obtained by the method employed are comparable with othera from more laborioua methode whoe confidential limite are often of the ame width (i.e. otolith and acalea reading).

REFERENCES

Ardizzone, G., 1982. Naturalista aicil., S. IV, 6 auppl., 2: 395-401.
Bertalanffy von, L., 1938. Hum. Biol., 10: 181-213.
Bhattecharya, C. G., 1967. Biometrix, 23 (1): 115-135
Bilio, K., 1969. Pubbl. Staz. Zool. Nepoli, 37 suppl.: 115-131. Fanciulli, G. and L. Orai Relini, 1979. Atti Soc. Toac. Sci. Nat., Men., aer. B, 86, suppl.: 383-387.
all'IRPEM dal Ministero Marina Mercentila ricerce comminaionate all 1Rper dal Miniatero Marina harcantile - Legge 388/1979: 104 pp. Gulland, J. A. and S. J. Holt, 1959. J. Cona. CIEM, 25 (1): 47-49 - Olivar, P., 1983. Stud. Rev. G.F.C.M., 59: 135 pp.

Pauly, D., 1983. FAO Finh. Tech. Pap., 234: 52 pp .
Ricker, W. E., 1975. Bull. Fish. Rea. Board Can., 191: 382 pp . Walford, L. A., 1946. Biol. Bull.. 90 (2): 141-147.

			ABLE:			
LIGURIAN SEA						
			L.INF	K	T0	TO*
M. merluccius	TL	MF	48.98	0.2095	-0.373	-0.463
M. barbatus	TL	MF	21.05	1.0880	-0.085	
S. FLEXUOSA	TL	MF	20.00	0.4405	-0.221	
P: BLENNIOIDES	${ }_{\text {TL }}$	${ }_{M}$	28.42 28.42	0.37972	-0.234	0.344
	SL	$\stackrel{1}{F}$	42.10	0.8951	-0.108	
HIGGER TYRRHENIAN SPECIES						
D. AnNularis	TL	MF	21.05	0.3865	-0.249	-0.128
CENTRAL TYRRHENIAN SPECIES						
M. barbatus	TL	MF	20.00	0.5682	-0.170	
S. LUCERNA	TL	MF	25.26	0.2321	-0.403	-1.084
S. vulgaris	TL	MF	35.79	0.4064	-0.205	-0.706
TABLE: 2						
AGE (YEARS)	I		II	III	Iv	v
ALDEBERT LENGTH (OLIVER. 1983)	12.00		19.80	26.30	31.80	36.50
OUR COMPUTATION LENGTH.	12.7		19.30	25.72 2.36	29.00 1.96	33.34 3.96

