Fish populations In Lake Burullus, Egypt. I. Specles composition in four fishing gears

\author{

- Institute of Oceanography and Fisheries, Kayet Bey, Alexandria (Egypt) \\ - Oceanography Department, Faculty of Science, Alexandria University, Alexandria (Egypt)
}

Previously the species composition of Lake Burullus was studied by Libosvarsky et al. (1972), Libosvarsky and Darrag (1975). Hashem et al. (1973) studied the composition and abundance of mullets in the
lake based on commercial and experimental catch data. The present lake based on commercial and experimental catch data. The present study concerns a survey of fish species caught by four of the most common fishing gears used in Lake Burullus, namely Dora (fyke nets), (wire traps). The abundance of the commercial species in the catch per unit effort of each gear was calculated.

Material and Methods
Monthly samples were collected during the period from January to December 1987 using four types of fishing gears; Nasha, Balla, Dora and Gawabi. Catch per unit effort for Gawabi is the catch in weight of five units of traps with 18 mm mesh size set for 24 hours. CPUE of
Nasha is 10 units joined together and set for 24 hours, each unit is 15 m long with mesh size of the inner layer ranging between 17 and 24 mesh m long with mesh size of the inner layer ranging between 17 and 24 mesh
bars per 50 cm . CPue of Balla is 10 units, 15 m long with mesh size of the inner layer ranging between 26 and 32 mesh bar per 50 cm . CPUE of
Dora is a 200 m long leader net, 35 mesh bar per 50 cm set for 24 Dora is a 200 m long leader net, 35 mesh bar per 50 cm, set for 24 hours, combined with 6
45 mesh bar per 50 cm .

The ichthyofauna of Results and discussion Burullus
egories: tilapias, mullets, freshwater fishes and fishes of major origin. $A l t o g e t h e r ~ 29$ fish species were identified in the catch of the four most commonly used gears of the lake. Mullets are represented by
 Chelon labrosus. All seem to be indemic to the lake fauna, with the exception of I. aurata that was not included among mullets listed by
Libosvarsky and Darrag (1975). Freshwater fishes, other than tilapias, included 7 species, only three of which, i.e. Haplochromis $\frac{\text { desfontainesij, }}{\text { Anguilla anguilla, have previous }}$ record in the layad and species, ion $\frac{\text { Aemichromis }}{\text { and }}$ bimaculatus, $\frac{\text { Clarias }}{}$ Lazera, Labeo niloticus and Dalophis $\frac{\text { imberbis, were only observed in the lake during the }}{\text { a }}$ present study. It has to be mentioned that other species were recorded by Libosvarsky and Darrag (1975) and were not recorded during the
present study. Their presence is uncertain, though not impossible, present study. since they could have been missed by the 4 gears used during the present study.

Fishes of marine origin are temporarily present in the lake,
the contribute a considerable part in the fish population of the lake Yet, it seems that at least four of them, i.e Dicentrarchus labrax, Solea vulgaris, Engraulis encrasicholus and Gobius sp., are consistant marine species that contribute much in the fish fauna of the lake, namely: $\frac{\text { D }}{\text { a }}$, punctata, Sciaena aquilla, Umbrina cirrosa and Crysophyris auratus, although not permanentiy represented in the catch northern half of Lake Burullus is not exhaustive. Beyond doubt, more fish species, both marine and freshwater, could enter this part of the lake. However, the occurrence of other species recorded during the present study or in previous studies seem to be rare and sporadic. In order to overcome the difficulties that may arise from this bias we will present the overall catch of the four gears as percentage average
catch per unit effort, as follows:

	Balla	Nasha	Dora	Gawabi	Average
Tilapia	$\frac{17.31}{}$	88.31	8.99	73.64	47.07
Mullets	66.74	4.55	59.86	11.86	35.76
Marine	10.03	2.26	27.47	0.69	10.14
Freshwater	5.88	4.89	3.12	13.82	6.93

This shows that, tilapias constituted on the average 47.07% of the catch from Lake Burullus. The four tilapia species, although are more or less equally abundant, but tend to have the following order of
 catch, were mostly represented by Liza ramada, that was the most
 constituting 5.62% of the total catch (15.7\% of the mullet catch).
Among marine fishes, Solea vulgaris constituted 3.49%, followed by $\frac{\text { Crysophyris }}{\text { (constituting }} 1.6$ and 1.54%, respectively). Among freshwater $\frac{D}{}$ fishes, Clarias lazera was the most abundant in the catch of the four fishing 2\%.

There are almost no data to compare our results with, except for the work of Libosvarsky and Darrag (1975) on Lake Burullus. However, 1972). They have shown that, in the catch of fyke nets during that period, mullets, or rather Liza $\frac{\text { ramada constituted on the average }}{} 73.9 \%$, while tilapias were only 5.3% of the catch.

References

Hashem, M.T., A.M. El-Maghraby and H.M. El-Sedfy
mullet fishery of Lake Borollus. Bull. Inst. Ocean. Fish., 3:
29-54. Libosvarsky, J. and A.H.A. Darrag 1975. Fishing success and weather conditions in winter at Lake Borullus, A.R.E. Zool. Listy., Libosvarsky, J., S. Lusk and H.M. El-Sedfy 1972. Fishery survey carried out at Lake Borullus, A.R.E., in the spring of 1971. Acta Sc. Nat. Brno, 6(7): 1-42.

E-IV8
Fish populations in Lake Burullus, Egypt.
II. Blology of Liza ramada in Lake Burullus, Egypt

Oceanography Department, Faculty of Science, Alexandria University, Alexandria (Egypt) Institute of Oceanography and Fisheries, Kayet Bey, Alexandria (Egypt)

Introduction

The mullet population of Lake Burullus is composed of five species, viz: Mugil cephalus, Liza ramada, L. saliens, L. aurata and $\frac{\text { Chelon }}{\text { mullet }} \frac{\text { labrosus Quantitatively, }}{\text { population. The present }}$ study deals with the age composition, growth equations for length and weight, and estimates of rates of mortality in an attempt to throw light on the fisheries of this species in the lake.

Material and Methods

caught from different areas of Lake Burullus. The sampling took ramada caught from different areas of Lake Burullus. The sampling took place each mont fishin the period from January to December for using effects of efficiency and selectivity of the fishing gears.
Random subsamples were taken each month for biological studies,
during the whole period, a total of 497 fish, ranging between 80 and during the whole period, a total of 497 fish, ranging between 80 and 350 mm in total length, were sampled. From each fish data on total length (measured to the nearest mm), total weight (weighed to the nearest 9 m$)$, and scale samples were collected.
relationship was computed according to the cubic relation $\mathrm{W}=\mathrm{ch}$. . relationship was computed according to the cubic relation $W=c L$.
Length at age were computed from length distribution data (Gulland, Lenyth at age were computed from length distribution data (Gulland, well as rate of exploitation were determined as given by pauly (1984).
$\frac{\text { Results and Discussion }}{\text { Age determination }}$
from scale readings revealed the presence of six from these dat . ramada in Lake Burullus. Age length key constructed frequency data of the 3835 collected fish into a length the length table from which the followiny mean lengths at ages were deduced: 12.87; 17.54; 23.09; 28.99; 32; and 34.67 cm , respective to age groups I to VI. These values are lower than those given for oter Eyyptian wascoun but are close to those given by Arne (1938) in the Gulf of Gascoyne, Ezzat (1965) in the etang de Berre. Moreover, L. ramada in Marseille, found that it completes its first year of life L. ramada in Marseill

The percentage occurrance of each age group shows that among the six aye groups represented in the catch, age group II constituted about 66%, followed by fishes of age group I (29.13\%) and aye group III
(4.88\%). Fishes older than 3 years constituted less than 0.5% of the population. Rafail (1968) analysing age composition of L. ramada population. Rafail alony the Egyptian coast of the Mediteranean Sea, found six age $\frac{\text { ramada, }}{\text { classes }}$ having the following relative frequencies: $55.6 ; 22.8 ; 10.4 ; 6.2 ; 2.9$ and 2.1% ($n=338$) for respective age groups I to VI. Hashem et al. (1973) have shown that fishes of age group I constituted 84\% of the population of $\frac{L}{}$. ramada in Lake Burullus. This indicate that this age structure was the natural case for this species in the lake.

Linear growth of L. ramada in Lake Burullus was found to be
$I_{t}=56.0366[1-\operatorname{EXP}(-0.1465(t+0.7455))]$
gram) for 497 individual of L. ramada ranging ind total weight (in 3 gram) for 497 individual of cm was found to be curvilinear and ranging in length between 10 and 35 cm was found to be curvilinear and was expressed mathematically by
the formula : log $\mathbb{W}=3.0764$ log $\mathrm{L}-2.2911$ ($r=0.975$)
The theoretical equation expressing growth in weight could thus be The theoretical equation expressing growth
written as:
$W_{\infty}=1124.33[1-\operatorname{EXP}(-0.1465(t+0.7455))]^{3.0764}$
Values of the exponent ' n ' of the length-weight equation indicates that M. capito is in good conditions and that it grows heavier that given by various authors in other Egyptian waters and in the Mediterranean

In a preliminary estimation of mortality rates exerted on L. mortality coefficient ' z ' was found to be equal to 0.6766 . Meanwhile the natural mortality coefficient ' M ' was computed using Pauly equation and was found to be equal to 0.5750 . The fishing mortality coefficient was thus found to be equal to 0.1016 . The rate of exploitation, or amount of death due to fishing, was found to be 0.0738 . This figure indicates that the population of L . ramada is very weakly exploited, natural causes. The age structure of the population is due to natural causes. The age structure of the population of L. $\frac{\text { ramada }}{\text { ind }}$ by this mortality. The length-weight relationships, on the other hand, showed that older age groups grow well under prevailing conditions in
the lake. Whether these results reflect the actual state of the the lake. Whether these results reflect the actual state of the
population of L . ramada in Lake Burullus needs more investigations. population of L. ramada in Lake Burullus needs more investigations.
References
1975. Biologie des stades juveniles de
teleosteens Mugilidae Mugil auratus Risso 1810 , Mugil capito $\begin{array}{ll}\text { teleosteens } \\ \text { Cuvier } 1829 \text { et Mugil } & \text { Mugil } \frac{\text { auratus }}{\text { saliens }} \text { Risso } 1810 \text {. } 1810 \text { III. } \frac{\text { Mugil }}{\text { Croissance }}\end{array}$ Cuvier 1829 et Mugil saliens Risso 1810 . III. Croissance
lineaire et ponderaí de Mugil capito dans le Golf de Marseille. Aquaculture, 5: 179-197.
Arne, P. 1938. Contribution a l'etude de la biologie des muges du Ezzat, Golfe de Gascogne. Rapp. Comm. Inter. Mer Medit. íl de quelcues Mugilídae de la region de l'etang de Berre et de port de Bouc: Gull These detat, 1983 . Aix-Marseinle.
land, J.A. 1983. Fish stock assessment. A manual of basic
methods. FAO/Wiley Series on Food and Agriculture. Vol. 1:
Hashem, M.T., A.M. El-Maghraby and H.M. El-Sedfy 1973. The grey
mullet fishery of Lake Borollus. Bull. Inst. Ocean. Fish. mulle
$29-54$
pauly, D. 1984. Recent developments in the methodology available for the assessment of exploited fish stocks of reservoires. In.
Status of African reservoir fisheries. CIFA Tech. Pap., 10 : Status of African reservoir fisheries. CIFA Tech. Pap., 10 . 10 :
326 p. edited by Kapetsky, J.M. and T. Petr. 326 p. edited by Kapetsky, J.M. and T. Petr.
$1, \mathrm{S.z}$.1968 . Investigations of mullet fishe
Rafail, S.z. 1968. Investigations of mullet fisheries by beach seine on the U.A.R. Mediterranean coast. Stud. Rev. gen. Fish.
Coun. Medit., 35: 1-19.

