A comparative study of phytoplankton in S. Aegean, Levantine and Ionian Seas during March-April 1986

K PAGOLLand O GOTSIS-SKRETAS

National Centre for Marine Research, Aghios Kosmas, 16604 Hellinikon (Greece)

Abstract. The present ADSTRACL. The present investigation represents an attempt to study and compare phytoplankton populations from S. Aegean, Levantine and Ionian seas. Sampling in the above mentioned areas (13 stations) was performed during March - April 1986. Water samples were collected from the upper 200m of the water column, preserved with Lugol solution and counted in an inverted microscope. minrosco

microscope. The dominant phytoplankton species from the examined areas are presented in table 1, while dominance indices for each sample (table 2) were calculated according to McNaughton formula (1987). Also phytoplankton species abundances were analysed by the truncated log - normal distribution (Cohen, 1959; Cassie,

TABLE 1. Dominant species in Aegean, Ionian and Levantine See (in alphabetical order)	TABLE 2. Dominant species (as indicated in table 1) and dominance index (5) in Aegean, Leventing and Lonion Sea								
1 Protocicatore delicatulum	ADDRAW CRA LUNIAN SUS.								
T. Dacteriastrum delleatuium		ABUSA	IN SKA			LEVANTI	NE SEA		
S Chaotecores desinions	C.	D	Demo			Denth	D		
4 Chaotopopog an	36.	Debru (m)	bout.sp.	0	36.	(m)	DOM. SP.	0	
5 Chilomonae marina		(11)	10 9	43		(10)	94 96	68	
6 Coppolithus fradilis	19	80	10, 0	40		e o	24,40	50	
7 Coccolithus lentonorus	10	200	20 7	20	80	10	26 21	40	
A Concolithus relagious		200	AA, (40	30	20	10 26	55	
9. Coccolithus an.	50	0	26.25	50		50	24 26	57	
10.Cryntomonas sn	•••	•					~1,~0	•••	
11.Cvclotella sp.	52	0	26.8	42		0	12.9	51	
12.Emiliania huxlevi		•	201 0		56	50	12. 8	54	
15.Exuviaella baltica		10	5.6	47				• •	
14.Gymnodinium pygmeum	68	50	2.18	33		0	15.12	51	
15.Gymnodinium sp.		75	4,18	40		50	15.12	34	
16.Gymmodinium variabile			-,		76	100	17.12	22	
17.Gyrodinium pingue	72	0	13.26	42		200	12.1	25	
18.Nitzschia closterium									
19.Nitzschia seriata						IONIA	N SEA		
20.0xytoxum variabile									
21.Peridinium sp.					St.	Depth	Dom. sp.	ð	
22.Rhizosolenia delicatula						(m)		-	
23.Scrippsiella trochoidea						0	23.12	19	
24.Synedra sp.					86	50	10.14	40	
25. Syracosphaera mediterranea						200	11,10	57	
26.Thalassiothrix frauenfeldii							-		
					85	0	10,18	38	
1962; Bliss; 1967) which provided	a rea	sonabl	e fit			0	9,14	59	
to the data as indicated by the	X ² (listrib	ution		83	50	14,20	51	

to the data as indicated by the X² distribution 85 50 14,20 51 (table 5). Finally a diversity index based on the log - normal parameters (table 5) was estimated 84 0 10,14 25 (Edden, 1971). Low values for phytoplankton abundances (from 82 0 12,23 23 1400 cells/1.st.76,200m to 23720 cells/1.st.36,0m both in the levantine sea, and dominance indices (table 2) were recorded in all areas defining their oligotrophic character. Another interesting feature is that distoms predominated in 5. Asgean, dinoflagellates In Ionian and coccolithophores in Levantine sea. High values of phytoplankton populations' diversities were estimated for all samples, while higher values of of (table 5) that have been recorded at the upper layers of stations 13 (Aegean sea), 38 (Levantine sea) and 86 (N. Ionian sea) might be attributed to fluctuating conditions of the environment (Georgopoulos et al. 1886; Theocharis et al. 1986a,b, 1987).

TABLE 3.Lognormal distribution parameters of phytoplankton species concentration in Aegean, Levantine and Ionian seas.

	AKUKAN SEA IONIAN SEA																			
St.	Depth (m)	N	μ	σ	Ñ	σ2	D.,	df	x	(٤	St.	Depth (m)	N	μ	α	Ñ	σ2	D"	df	χ2
	0	25	1.7	0.7	42	0.5	5.2	5	0.	8		0	55	2 5	0.6	37	0 5	R 1		20 8
13	50	24	1.1	0.9	85	0.8	8 2	ă	5	4		8	20	2 1	0.0	50	0.0	0.1	0	20.0
	200	29	1 8	0.5	42	0.5	8 0			4	80	10	00	A.1	0.0	00	0.4	0.0	3	0.3
			1.0	0.0	-140	0.0	J.A	~	ч.	J	30	10	41	4.1	0.5	20	0.5	4.0	3	7.0
50	0	21	0 1	0.6	00	~ *						20	27	2.4	0.4	28	0.2	4.7	5	5.8
00	Ŭ	<i>6</i> 1	4 .1	0.0	20	0.4	4.0	4	э.	3		50	27	2.3	0.5	28	0.3	4.7	4	9.0
52	0	26	2.0	0.6	32	0.5	4.9	4	9.	1		0	15	2.5	0.4	15	0.1	5.9	10	10.5
											56	50	22	2.1	0.3	22	0.1	4.5	3	7.4
	10	21	2.1	0.5	23	0.3	4.5	3	3.	8										
68	50	17	2.2	0.4	18	0.1	4.1	2	2.	5		0	26	2.1	0.6	57	0.5	5.1	5	2 5
	75	14	2.5	0.5	15	0.2	5.9	2	5.	7		50	37	1.9	0.7	45	0.5	5.6	7	10.5
											76	100	24	2.1	0 4	69	0 2	4 7	à	A B
72	0	13	2.0	0.6	18	0.4	4.0	4	5.	5		200	11	2.0	0.5	12	0.1	5.5	2	1.9
IONIAN SEA																				
St.	Depth	N	μ	σ	N	α2	D.,	df	X	2										
	(m)											N=tots	l r	umbe	or of	ot	Berv	ed a	IDAC	ies.
	0	23	2.2	0.5	27	0.5	4.6	4	11.	3		u = 10	og n	nean	abu	inda	Inces		σ =	log
86	50	32	1.8	0.9	51	0.8	5.4	5	8,	6		standa	rd	devi	atic	m.	N= t	ntal	ີກະ	mher
	200	15	1.8	0.5	20	0.5	4.2	2	1.	0		of ext	ent	ed a	neoi	<u></u>		- 10	. no	noo
												D" = 1	nø	ŵ -	0 54	66	* 21	dive		+
85	0	18	1.9	0.5	25	0.5	4.6	5	5.	0		df = d	led 1		0.04	100	dom	uive	101	uy),
										-		ui - 0		000		100	aom.			
	0	15	1.1	0.7	60	0.5	5.7	2	1.	7										
83	50	25	1.9	0.5	35	0.2	5.1	2	2.	1										
84	0	26	2.3	0.4	27	0.2	4.7	5	8.	9										
82	0	19	1.9	0.4	33	0.2	50	2	5	5										
*										-										
Refe	rences																			
BL.IS																				
CASSIE, W R 1962 I Anim Pool 31, 68 00																				
COHR	N A	<u>_</u>	108	10.0		10	1. <u>E</u> C		. P	1:	20-92 20-00	•								
PDDP	$\frac{1}{1000} + \frac{1}{1000} + 1$																			
BEDBEN, A. C., 19(1. J. SXP. MBr. B101. Kcol., 6: 199-209.																				
GROW	UUPUUL	ωs,	- 5		et	81.	, 1	986	i .	Pa	aper	presen	ted	at	th	e	POKM	l Wo	rks	hop,
Brdemli, Turkey, June 1986.																				

Brdemli, Turkey, June 1986.
Nexture, 216: 168-169.
THEOCHARIS, A. et al., 1986a. Paper presented at the POEM Workshop, Erdemli, Turkey, June 1986.
THEOCHARIS, A. et al., 1986b. Paper presented at the POEM Workshop, Brdemli, Turkey, June 1986.
THEOCHARIS, A. et al., (in press). Paper presented at the 2nd Hell. Symp. Ocean. Pish., Athens 1987 (in Greek).

Rapp. Comm. int. Mer Médit., 31, 2 (1988).

Sewage nutrient enrichment and phytoplankton ecology in the Pagassitikos Gulf (Greece)

N. FRILIGOS and O. GOTSIS-SKRETAS

National Centre for Marine Research, Aghios Kosmas, 16604 Hellinikon (Greece)

The abundance, species composition and taxonomic diversities of phytoplankton has been studied in relation to sewage pollution in the north Pagassitikos Gulf, Greece (Fig. 1). Surface water samples were collected from a series of stations in July 1987. Samples were preserved, concentrated by settling, and the concentration of each species of phytoplankton enumerated in an inverted microscope. Water samples from the vicinity of the major sewer outfalls (Stations 1,

Table 1: Surface salinity(%) and nutrients

	0	µg-at/l	.).			
St.	s	P04-3	S104	NH 4	NO2	NO3
1.	34,6	0.91	14.65	0.98	0.24	5.87
2.	30.7	0.42	27.20	1,15	0.08	13.81
3.	22.2	0.49	34.35	1.30	0.07	17.86
4.	37.2	0.12	1.18	1.25	0.08	1.18
5.	36.6	0.10	4.74	0.74	0.07	2.18
6.	36.9	0.13	3.16	1.70	0.08	6.67
7.	36.1	0.10	7.20	0.76	0.08	3.47
8.	37.1	0.11	5.53	0.44	0.08	2.56
9.	37.0	0.13	2.69	0.58	0.07	1.26
10.	36.8	0.11	2.70	0.48	0.08	0.96
11.	37.0	0.13	2.98	0.41	0.08	1.06

Table 2: Taxonomic groups (cells x 103/1). Numbers in parentheses are the % ratios.

Taxonomic St. group.	1	2	3	4	5	6	7	8	9	10	11
Diatons	282	48.4	13.8	16.3	19.5	11.2	23.2	22	10.6	31	12.9
	(2.2)	(13.2)	(17.8)	(12.9)	(31.6)	(67.4)	(36.7)	(31.7)	(43.6)	(50.5)	(65.4)
Dinoflagellates	12145	316	57.4	106	41.1	3.9	39.4	44.3	12.4	27.2	5.6
	(97.7)	(86.5)	(74)	(84)	(66)	(23.4)	(62.3)	(63.6)	(51)	(44)	(28.4)
Coccolithophore:		0.8	3.2	4	1.1	1.5	0.6	3.3	1.3	3,1	1.2
	-	(0.2)	(4.3)	(3.1)	(1.7)	(9)	(0.9)	(4.7)	(5.3)	(5)	(6)
Silicoflagellate	s _	-	_	_	-	-	-		_		-
										(0.6)	
Total microplankt	n 12427	365	74.4	126	61.7	16.6	63.2	69.6	24.3	61.3	19.7
µ flagellates	2184	38.2	173	113	199	124	24	37.5	110	42.1	31.4

Pagassitikos Gulf. A considerable variation in the occurrence of species and dominance occurred along the nutrients gradients (Table 3). DinoflagelTates were dominant in polluted waters, while diatoms dominated in cleaner waters (Table 2). From the dominance and relative distribution of the taxa along the nutrients gradient certain species of Gymnodinium emerge as indicator species of red tide pollution. These chan-

Table 3: Dominant species, dominance (6, McNaughton, 1967) and diversity (D, Margalef, 1967) indices.

St.	Dominant species	5	D
i	Gymnodinium sp. Cachonina nisi	94.1	0.49
2	Gymnodinium sp. Cachonina niej	83.4	1.37
з	Cachonina niei Gymnodinium sp.	68.1	1.93
4	Cachonina niei Gymnodinium sp.	73.4	1.87
5	Gymnodinium sp. Cachonina nież	60.2	1.77
6	Chastoceros affinis Witzschia closterium	28.9	2.77
7	Gymnodinium sp. Cachonina niei	55.5	1,89
8	Cachonina niei Gymnodinium sp.	51.2	2.28
9	Chastoceros socialis Gymmodinium sp.	41.1	2.72
10	Gymnodinium sp. Chastoceros socialis	31,9	2.69
11	Chastoceros socialis	32.4	2.81

ges correspond to a typical degradation of a complex community to a

2 and 3) showed very high con-

centrations of nutrients, greater total concentration of phytoplankton, and a lower taxonomic diversity than samples remote from outfalls (Tables 1, 2 & 3) . Phytoplankton abundance and taxonomic diversity depend upon the supply of nutrients in natural waters, where abundance increases and diversity decreases with increasing nutrient

concentrations (Table 4) in the

Fig. 1. Sampling locations

less mature state by the inflow of nutrient-rich sewage (eutrophication) in the north Pagassitikos Gulf.

REFERENCES

MARGALEF, R., 1967. Oceanogr. mar. Biol. Ann. Rev., 5:257-289.

MCNAUGHTON, S.J., 1967. Nature, 216:168-169.

		-
Phytoplankton density correlated with :	Regression equation	Correlation coefficient
Phosphate Nitrite	log Y = 2.70X+4.30 log Y =14.25X+3.66	0.87* (n=9) 0.88* (n=9)
Diversity of phytoplankton correlated with :	Regression equation	Correlation coefficient
Phosphate Nitrite	D = - 2.20X+2.60 D = -10.37X+3.01	-0.80* (n=9) -0.72**(n=9)

Rapp. Comm. int. Mer Médit., 31, 2 (1988).

Table 4: Significant linear correlation between biological and chemical

parameters.

* Significant at the 99% level ** significant at the 95% level