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Recent work suggests that Lagrangian parcel trajectories in large and meso:scale fl_ows c_an 
have a fractal dimension (OSBORNE, et al, 1986, 1989; PROVENZALE, et al, 1989). Dnfter traJectones 
may be viewed as fractal curves in the plane of the ocean's surface and have typical fractal dimensions of 
about 1.30 ± 0.06 in a range of scales normally attributed to geostrophic turbulence_ There are several 
fundamental questions which we address with regard to these results (OSBORNE and PROVENZALE, 
1989; OSBORNE and CAPONIO, 1990a, b): 

(1) One normally thinks of solutions to partial differential equations as being reasonabl~ smoot~, well
behaved differentiable functions. How can it theoretically be possible for the dynamical mot10ns of 
particle trajectories to physically be fractal curves? 

(2) What are the physical implications of fractal trajectories on fluid flows in general? 

(3) What new, unique physical information can the fractal dimension give us with regard to large scale 
flows? 

(4) Can the fractal dimension be of use in solving the inverse problem, i.e. determination of the general 
circulation from drifter trajectories? 

(5) What relation does the fractal dimension have to fluid properties such as anisotropic and anomalous 
diffusion in fluids? 

(6) What are the implications on fractal front propagation and onfracta/frontogenesis? 

To address these questions we discuss a simple, nonlinear Hamiltonian model for describing 
particle motions in large and meso-scale oceanic and atmospheric flows. The model predicts nonline3! fluid 
parcel trajectories in 2-D where the stream function power spectrum has the form lrY (y const), while the 
velocity spectrum is given by k--O, B=y--3. The equations of motion are 

X = Urms~XV\jl(X,t) 
The over-dot denotes time derivative, x(t)=[x(t),y(t)J is the parcel position in the xy-plane, fl: is the unit 
vector perpendicular to this plane, V = (i!x,i!y,i!z) and Urms is the assumed rms velocity of the flow. \jl(x,t) 
is the stream function or Hamiltonian, which is here given .i stochastic representation in two dimensions. 
The dispersion relation is ro = uk, where k = lkl, and u is constant. Using this model as a basis we apply 
both analytical and numerical methods to show that fluid particle trajectories: (1) while differentiable and 
chaotic at small scale, may be fractal space curves at larger scale and (2) undergo anomalous transport. 

We identify a "stochasticity parameter'' µ=u/urms which characterizes the flow: (a) Whenµ= 
0 the Hamiltonian is time independent and exactly integrable, but the system is nevertheless fully nonlinear. 
For specific initial conditions x(0)=x0 , x(t) lies on the contour given by \jl(X0 )=const. For 0g,sl, x(t) is a 
fractal curve in the xy-plane with dimension D=2/(B+l), 15052, and has anomalous absolute diffusion 
<lx(t) - x(0)12> = :012/D, for :0 the diffusion coefficient. (b) Forµ<< 1 and finite, the flow is chaotic and 
of KAM (Kolmogorov-Arnol'd-Moser) type, i.e. the Hamiltonian consists of\jl(X) plus a perturbation. The 
KAM "surfaces" are very nearly fractal contours of\jl(x). '!f(X,t) varies slowly in time and stochastic layers 
are formed. (c) Forµ < 1, the flow is chaotic and lies in a trapping regime. characterized by vortices and 
vortex hopping. (d) When µ<:1, clustering occurs, and isolated clumps of activity appear, evidently the 
remnants of the vortices. (e) Forµ" 1, the flow is fully stochastic, equivalent to a nongaussian random 
walk in the plane. Example trajectories are given in Figure 1. 

Figure 1. Particle trajectories for a velocity spectrum Jc--0.5; the units are kilometers; urms = 7 km/day. (a) 
µ=O, the motion is periodic, and the trajectory is a fractal curve with dimension D=l .33. (b) µ=0.0014, the 
motion is of KAM type and stochastic layers form. (c) µ=0.014, the motion lies in the vortex/vortex
hopping regime. (c) µ=1.4, the motion is fully stochastic, a nongaussian random walk in the plane. 

REFERENCES 

OSBORNE, A. R., KIRWAN, JR., A. D., PROVENZALE, A. and BERGAMASCO, L., 1986 A search 
for chaotic behavior in large and mesoscale motions in the Pacific Ocean_ Physica D 23: 75-83. 

OSBORNE, A. R. and PROVENZALE, A., 1989 Finite correlation dimension for stochastic systems with 
power-law spectra, Physica D 35: 357-381. 

OSBORNE, A. R., KIRWAN, JR., A. D., PROVENZALE, A. and BERGAMASCO, L., 1989 Fractal 
drifter trajectories in the Kuroshio extension, Tellus 41A: 416-435. 

PROVENZALE, A., OSBORNE, A. R., KIRWAN, JR., A. D. and BERGAMASCO, L., 1990 The study 
of fluid parcel trajectories in large scale ocean flows. In Nonlinear Topjcs in Ocean Physics, A. R. Osborne 
ed., Elsevier, Amsterdam. 

OS~ORNE,_ A. ~-, and CAPONIO, R., 1990 Fractal Trajectories and Anomalous Diffusion for Chaotic 
Particle Motions m 2-D Turbulence, submitted for publication. 

OSBORNE, A. R., _and CAPONIO, R. (1990) The Transition From Chaos to Stochasticity in 2-D 
i~:~~uns~~k~ ~~-nhnear and Turbulent Processes in Physics, A. G_ Sitenko, V. E. Zakharov and V. M. 

Rapp. Comm. int. Mer Medit., 32, l ( I 990). 


