L-II2

Chemical forms of metals in flocs formed during sludge dumping in the sea

Ronald J. GIBBS* and Michael ANGELIDIS**

*Center for Colloidal Science, College of Marine Studies, University of Delaware, Newark, DE 19716 (U.S.A.) **Environmental Studies, Papadiamantopoulou 2, 115 28 Athens (Greece)

The dumping of sludge from wastewater treatment plants, into the sea, is used as a sewage sludge disposal method in the USA and some Buropean countries.

As the sludge encounters seawater, the particles it contains coagulate to form flocs, which are settling to the bottom with different settling velocities.

The impact that such a disposal method has on the marine environment depends on the quality of the sludge (urban or industrial) and the characteristics of the sea area where the dumping is done (currents, bottom topography, etc) (Pearson 1985). On the other hand, the chemical forms of the metals in the flocs formed after the dumping of the sludge in the sea, have a direct influence on their availability for consumption from the marine organisms of the area, and therefore on the potential harm to the marine ecosystem.

In order to study the process, the mirine ecosystem with seawater during the dumping into the sea was simulated in the laboratory infour settling velocities fractions (Gibbs 1986). The ohemical characterisation of the metals in the flocs was performed using a sequential extraction technique (Gibbs 1973, Forstner and Wittmann 1979). The metals analysed were Cd. Cr. Cu. Fe. Pb and Zn (Angelidis and Gibbs 1989, Angelidis and Gibbs 1990).

The characteristi presented in Table	cs of the 1.	sludge	used in	the exp	eriments	are
TABLE 1 Total and dissolved concentration of metals in Bowery Bay Treatment Plant sludge						
	n Bowery Ba	y Treatm Cr	ent Plan Cu	t sludge Fe	 Pb	 Zn
Total (mg/l) Dissolved (mg/l) (percent)	0.540 0.058 (10.7)	44.37 0.165 (0.37)	76.64 0.123 (0.16)	475.4 2.30 (0.49)	<pre></pre>	165.6 0.369 (0.22)
After the coag formed large flocs fast setting flocs oridialisation The fast setting (exception Fe) in oxides (Table 3).	ulation, mo with settl s, the grea organic mat 8.9% of Fe, flocs conta the reducib	st of th ing velo ter part ter and 90.1% o ined ver le phase	e mass o cities > of the sulfides f Pb and y small , which	f the sl 6.0 cm/ metals w [59.18 66.6% c quantiti consists	udge (79 min. In of Cd, f Zn]. (es of me mainly	.1%) these nt in the 81.7% of Table 2). tals of Fe/Mn
The small floc only the 2.6% of t metal content was 56,5% of Cu, 59.2% oxidizable phase o concentrations (Ta	s, with set he mass of in the redu of Fe, 60. f these flo ble 2).	tling ve the slud cible ph 4% of Pb cs conta	locity < ge. The ase (67. and 89. ined con	0.7 cm/ larger p 3% of Cd 2% of Zn siderabl	min, rep art of t 49.6% (Table y lower	resented heir of Cr, 3). The metal
The adsorbed phase velocity fraction any particular tre examined.	of the met s and the r nd in the d	als was esidual ifferent	negligib (detrita settlin	le in a l) phase g veloci	ll sett didn't ty fract	ling show ions
		TABLE 2				
Relative () different set) concentrations (ation of city frac	oxidizal tions ()	ble meta Bowery B	ls in the	e e)
Settling velocity	Cd	Cr	Cu	Fe	Pb	Zn
< 0.7 cm/min 0.7-2.5 cm/min 2.5-6.0 cm/min > 6.0 cm/min	14.9 30.0 35.8 59.1	46.0 41.7 47.7 81.7	37.7 69.2 94.3 97.8	26.5 29.5 53.1 48.9	39.6 39.0 61.9 90.1	7.4 21.5 46.6 66.6
TABLE 3						
Relative (%) concentration of reducible metals in the different settling velocity fractions (Bowery Bay sludge)						
Settling velocity	Cd	Cr	Cu	Fe	Pb	Zn
< 0.7 _ cm/min	67.3 56.5 59.5	49.6 56.9 51.1				89.2 74.8 35.8
2.5-6.0 cm/min 52.7 > 6.0 cm/min	17.6	15.3	0.7	34.9	6.8	32.0
CONCLUSIONS						
CONCLUSIONS The above results indicate that there is a significant geochemical difference in the chemical forms of metals, between the large and small flocs which are formed after the dumping of the sludge into the sea. The large (and faster setting) flocs, sink to the bottom near the dumping site, forming a floc blanket containing most of the metals in the oridizable phase (organic matter and sulfides), and therefore, easily available to the marine organisms living in the area.						
On the other ha to longer distances the reducible pha easily available fo	ind, the sma by the cur ise (Fe/Mn or uptake by	aller mic rrents, c oxides) y the man	contain r ontain r and the ine orga	which management which management which have been applied as a second which have been applied as a second second second second second second second second second second second second second second second second second s	ay be tra their me they are	ansported tals in not
The above concl sludge dumping site sludge dumped, but present in a chemic organisms in the ar	usions suga , is not of also the ma cal form that rea.	gest that nly recei etals cor at can ea	the are ving most tained is sily be	ea direct st of the in this t uptaken	tly under mass of floc blan by the n	r the f the nket are marine
The smaller flocs, represent any seric don't represent an metal content is in the marine organism	which trave ous threat f important r a chemical ms.	el greate to the ma nass of t l form wh	er distan arine eco the sludo nich is f	nces, do osystem, ge and be not easi.	n't seem because ecause th ly availa	to they heir able to
REFERENCES						
ANGELIDIS M. and GI treated sludges. Wa						
ANGELIDIS M. and GI ocean dumping of s GIBBS, R.J. 1973. M Science 156: 1734-1	BBS R.J. 19 udge. The S lechanisms of	990. The Science of of trace	segregat f Total metal ti	tion of r Environ ansport	metals du ment (in in rive	
Science 156: 1734-1 GIBBS, R.J. 1986. S Marine Chemistry 18						
FORSTNER U. AND WITTMANN C.T.W. 1979. Metal Pollution in the Aquatic Environment. Springer-Verlag, Berlin-Heidelberg,486p FRARSON, T.C. 1985. Disposal of sewage in dispersive and non- dispersive areas: contrasting case histories in British coastal waters. NATO ASI Series: 577-595.						
waters. NATO ASI Se	ries: 577-5	case his	tories i	in Brit	ish coas	stal

Rapp. Comm. int. Mer Médit., 32, 1 (1990).