V-V1

Aquaculture Production in Greece, 1980-1988
I.-N. ARGYROU* and K.-I. Stergiou..
-institute of Technological Applications Hellenic Productivity Centre, Athens (Greece) -National Centre for Marine Research, Agios Kosmas. Hellenikon, Athens 16604 (Greece)

ABSTRACT

1988 with a mean production (ef 2340 lagoons) in Greece increased from $2,000 \mathrm{t}$ in 1980 to $3,900 \mathrm{t}$ in Greek waters the mean 1986-1988 production $1-2 \%$ of the mean annual fishery production carp, 132 t sea bream/sea bass, 570 t mussels, and 51 t other species (of which 7 t eels). The mean 1984-1986 production represented 0.4% of the mean (1984-1986) Mediterranean aquaculfure production. A quadratic trend model explained 85% of the variability of aquaculture producINTRODUCTION

Although aquaculture experience in Greece goes back to the 1950 's, it is only since 1980 that
aquaculture developed systematically; from 1981 to 1988 more than 12 million aquacuiture developed systematically; from 1981 to 1988 more than 12 million USD have been
spent for the development plant of marine aquaculture (ANONYMOUS 1990) whereas more than spent for the development plan
100 million USD were planned to be invested for 1991 (KALLIFIDAS 1987. 1991 (KALLIFIDAS 1990). Here aquaculture production agoons) is reviewed for 1980-1988. Yet, since production will be beneficia for the development of aquaculture infrastucture
forecasts using decomposition (trend nalysis) time-series techni-

MATERIAL AND METHODS Annual aquaculture produc lagoons) for 1980-1988 and production per specie (1986-1988) are taken from he Ministry of Agriculture KALLIFIDAS (1990) and AR
GYROU
(1990) analysis was used to mode aquaculture production for

ly, in-sample (1980-1988) and out-of-sample (1989-1992) forecasts were produced. The following measures of forecasting accuracy were computed: (1) Absolute Percentage Error, APE, (2) Mean
Absolute Percentage Error MAPE and (3) Mean Error (according to MAKRIDAKIS et al, 1983) and the coefficient of determination (according to SAILA et al. 1979)

RESULTS AND DISCUSSION

Aquaculture production (excluding lagoons) in Greece increased from $2,000 \mathrm{t}$ in 1980 to $3,900 \mathrm{t}$ in 1988 (Fig. 1) with a mean production of 2,340 t representing $1-2 \%$ of the mean annual fisher production in Greek waters (STERGIOU 1990a). The mean 1986-1988 production was allocated as follows (Fig. 2): 1983 t trout, 233 t carp, 132 it sea bream/sea bass, 570 t mussels, and 51 other species (of which 7 t eels). The mean (1984-1986) production amounted $2,000 \mathrm{t}$ repre 1989). The mean (19841986) trout in production
ranked fourth in the Meditteranean salmonid produc06 the mean (1984-1986) ($=$
66,000 t Frane, Italy and 66,000 t; France, Italy and
Spain made up more than 90% of saimonid production during
1989).
Production per farm during
$1986-1988$ increased significantly for mussels (from 15 t /farm to 46 t tfarm) and carp (from 5 t /farm to 14 t/plant) whereas it did not exfor the remaining species for the remaining
(ARGYROU 1990).

Forecasting as applied to
biological systems is mainly
lig. 2. Mean (1986-1988) aquaculture production per species (excluding oriented towards modeling on the basis of: (a) explanatory, regression techniques (simple, multiple, categorical) which take into account other input variables, and (b) stochastic, time series tech transfer function models spectral a black box (Autoregressive integrated Moving Average models, not be applied to our data because (a) the factors that mainly affect aquaculture production in Greece (e.g. such as technical and scientific expertise, management skills) cannot be parameterized, and (b) production time-series is short. Hence, a simple, decomposition method (trend analysis) was used to model and predict aquaculture production. Decomposition methods try to identify components of the basic underlying pattern and forecasting is based on extrapola-
tion each of these component patterns separately and recombining them into a final forecast. The tion each of these component patterns separately and recombining them into a final forecast. The
following quadratic trend curve was fitted to the $980-1988$ data: $X_{t}=3.12-0.65 T+0.08 T^{2}$, where $X_{t}=$ production (in 1000 t) and $T=$ time. ME and MAPE were estimated to be 0.0 and 9.5%
respectively. APE ranged from 3.3 to 15.9%. The model explained 85% of the variability of aquaculture production in 1980-1988 and forecasts for 1992 amount $7,900 \mathrm{t}$ (Fig. 1).

Forecasting plays a central role in managerial decisions: it preceeds planning which, in turn preceeds decision making (MAKRIDAKIS et ai. 1983). Forecasting of annual Greek aquaculture production within an APE ranging from 3.3 to 15.9% (MAPE =9.5\%) is an important goal. Aquaculture production in Greece is influenced by many factors and is confronted by all sorts of uncertain
ty (management skills, availability of fingerlings availability of food, technical and scientific expertise). Yet accuraté forecasts will be beneficial for the development of aquaculture infrastruc ture (fry and feed production both of which at present are mainly imported increasing the cost of products and render them not competitive for exportation), predict future prices, and planning ex-
ports and absorption by the local market.

REFERENCES

ANONYMOUS 1990. Greek Fishing News 103: 115-116 (in English)
ARGYROU, I.N. 1990. Greek Fishing News 103: 65-72 (in Greek)
GIRIN, M. 1989. AquaReview : 26: 31-34
KALLIFIDAS, G. 1990. Greek Fishing News 103: 52-56 (in Greek)
MAKRIDAKIS, S., S. WHEELWRIGHT \& V. MCGEE. 1983. Forecasting: methods and applications. John Witey \& Sons,
SAlLA, S.B., M. WIGBOUT \& R.J. LERMIT. 1979. J. Cons. int. Explor. Mer 39: 44-52
STERGIOU, K.I. 1989. J. Cons. int. Explor. Mer 46: 16-23
STERGIOU. K.I. 1990a. Greek Fishing News 103: 31-38 (in Greek)
STERGIOU KI. 1990b. Fish. Bull. U.S. 88 (2) (in press)

