As to the cephalopods found in the shark stomach, and cetaceans) suggests that they are not as rare as was thought. Thus, these observations can contribute to a better understanding of the teuthofauna structure of the Gulf of Taranto (BELLO, 1985), whereas the occurrence of Histioteuthis in this area has been rarely recorded (BELLO, 1987; MANGOLD, 1962). The morphologic peculiarities of the upper row of sepia, whose ventral side is almost straight, making a downward curve only at the middle, were described by the regression equations reported by CLARKE (1986). Mantle lengths of beaks were identified according to MANGOLD (1988). The size of beaks was described by the rostral length, as suggested by CLARKE (1986). Mantle lengths were estimated from the beaks. The mantle length estimation for H. bonnellii and T. sagittatus was done by the regression equations reported by CLARKE (1986) and for H. reversa by simple proportion with beaks extracted from specimens of known mantle length.

The cephalopods found in the stomach content of blue sharks specimens nos. 1 to 5 were reported below the table with their size and estimated mantle length.

The gastero content of the examined blue shark specimens appeared to be rather poor and not very diverse; they had fed upon typically pelagic species. A cautious comparison between the present results — caution is due to the small number of P. glauca specimens examined — and the analysis of the stomach content of P. glauca from the same area (BELLO, 1985) and in preparation shows a possible competition for food. Swordfish mostly prey upon T. sagittatus; they also occasionally ingest histiotuchids. Besides it is well known that P. glauca and T. sagittatus compete for longline hooks. For instance DE MERPOT et al. (1985) report that in a two year period 209 swordfish and 105 blue sharks were caught by drifting longline in the Gulf of Taranto.

As to the cephalopods found in the shark stomach, T. sagittatus is abundant in the Gulf of Taranto (BELLO, 1985), whereas the occurrence of H. bonnellii and H. reversa has been rarely recorded (BELLO, 1987; MANGOLD et al., in press). However the analysis of predator stomach content (present results; personal observations on swordfish and octopuses) suggests that they are not as rare as was thought. Thus, these observations can contribute to a better understanding of the teuthofauna structure of the Gulf of Taranto.

List of cephalopods found in the gastrointestinal content of blue shark specimens.

The gastero content of the examined blue shark specimens appeared to be rather poor and not very diverse; they had fed upon typically pelagic species. A cautious comparison between the present results — caution is due to the small number of P. glauca specimens examined — and the analysis of the stomach content of P. glauca from the same area (BELLO, 1985) and in preparation shows a possible competition for food. Swordfish mostly prey upon T. sagittatus; they also occasionally ingest histiotuchids. Besides it is well known that P. glauca and T. sagittatus compete for longline hooks. For instance DE MERPOT et al. (1985) report that in a two year period 209 swordfish and 105 blue sharks were caught by drifting longline in the Gulf of Taranto.

As to the cephalopods found in the shark stomach, T. sagittatus is abundant in the Gulf of Taranto (BELLO, 1985), whereas the occurrence of H. bonnellii and H. reversa has been rarely recorded (BELLO, 1987; MANGOLD et al., in press). However the analysis of predator stomach content (present results; personal observations on swordfish and octopuses) suggests that they are not as rare as was thought. Thus, these observations can contribute to a better understanding of the teuthofauna structure of the Gulf of Taranto.