V-IV2

Levels of Heavy Metals in Two Demersal Fishes, Arnoglossus laterna (Risso, 1810) and Buglossidium luteum (Walbaum, 1792) in Izmir Bay Hatice PARLAK• and Erkan DEMBRKURT••
Ege University, Facuity of Science, Department of Biology, Hydrobiology Section, Izmir (Turkey)
-Dokuz Eylüi University, Institute of Marine Sciences and Technology, Izmir (Turkey)
of heav this study, the quantity of data on the presence and content collected from in two demersal fishes, (A- laterna and B.- buteum) samples were chosen considering to their presence in every season and found them easily in the study area. The aim of this study was to
determine the concentrations of Hg . Ca, Pb and zn in the fillet of determine the concentrations of $\mathrm{Hg}, \mathrm{Ca}, \mathrm{Pb}$ an
these fishes and compare the data of two years.

The analytical procedure applied involved a decomposition technique using $\mathrm{HNO}_{3}-\mathrm{HClO}_{4}(5: 1)$ acias in water bath with the Cemperature maximum $40^{\circ} \mathrm{C}$ under reflux system

Determinations were carried out with Atomic Absorbtion spectrophotometer (Varian Techtron, Model 1250). Hg was determined by accessory and the other elements by flame (BERNAARD, generation
1976). The results have been calculated as $\mu \mathrm{g} / \mathrm{kg}$ wet weight, medians and quartiles of data has been used for statistical evaluations (TUKEY, 1977; CLAUSSEN, 1988). much between 1988 and 1989 with lower quartile values of 9 and 13 $\mathrm{HgHg} / \mathrm{kg}$ wet weight and with upper quatile $30-23 \mathrm{\mu ghg} / \mathrm{kg}$ respectively. Also, Hg concentrations of B._luteum in these two years ranged from 16 to $11 \mu \mathrm{gHg} / \mathrm{kg}$ as lower quartile and with the values $45-23 \mu \mathrm{gHg} / \mathrm{kg}$ upper quartile. It can be seen that Hg concentration has slightly decreased in 1989.

Cadmium concentrations of A. laterna ranged from 8 to 296 $\mu \mathrm{gCa} / \mathrm{kg}$ as extreme values for 1988 while they varied from 72 to 334
 to $289 \mu \mathrm{gCd} / \mathrm{kg}$ in 1988 varied in between 56 to $175 \mu \mathrm{gCd} / \mathrm{kg}$ in 1989. So, Cd concentrations in $\frac{B}{}$. luteum has increased in 1989 comparing to the data lead concentrations of 19

Lead concentrations of A. laterna was higher than of B. luteum generally. A. laterna has Pb concentrations between 127 to 4627 $\mu \mathrm{gPb} / \mathrm{kg}$ as extreme values whereas accumulation in $\frac{B}{}$. - luteum varied
between $94-3623 \mu \mathrm{gPb} / \mathrm{kg}$ in 1988 . Also, pb values obtained pb from the samples collected in 1989 varied from 371 to $4138 \mu g \mathrm{fb}$ fg in the laterna. It can be seen from the Table 1 that $p b$ concentrations $i=A^{\prime}$ these organisms has decreased in 1989 comparing with these from 1988.

Zine accumulations of A. laterna ranged from $3520-3863 \mathrm{\mu g} \mathrm{Zn}_{\mathrm{n}} / \mathrm{kg}$ respectively as lower quartiles and $5669-5380 \mathrm{\mu g} 2 \mathrm{n} / \mathrm{kg}$ as upper
quartiles during 1988-1989. Also, zn values of B. luteum ranged from $2680-2824 \mu \mathrm{gZn} / \mathrm{kg}$ as lower quartiles and $4325-3480 \mu \mathrm{~g} 2 \mathrm{n} / \mathrm{kg}$ as upper quartiles respectively during 1988-1989. The zinc values has decreased in 1989 in both fishs but z_{n} content of A. -laterna was higher than of B. Iuteum (Table 1).

Table 1- Statistical values of trace metal concentrations in two demersal fishes (A. laterna and B. luteum) in Izmir Bay ($\mu \mathrm{g} / \mathrm{kg}$ wet weight).
$\begin{array}{lccccccc} & \text { Mercury } & \text { Cadmium } & \text { Lead } & \text { Zinc } \\ \text { Species } & 1988 & 1989 & 1988 & 1989 & 1988 & 1989 & 1988 \\ & 1989\end{array}$

| A. laterna | Mimimum | 5 | 5 | 81 | 172 | 1271 | $371 \mid$ | \| 2751| | 2749 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \| Lower Quartile | 9 | 13 \| | 39 \| | 183 | 5311 | $771 \mid$ | \| 3520| | 3863\| |
| | \mid Median | 20 | 17 \| | 161 \| | \| 102 | 2363\| | 945 | [3915 \| | 4577\| |
| | \| Upper Quartile | 30 | 29 \| | 2231 | 1130 | 2671 | 16951 | 5669\| | 5380\| |
| | \| Maximum | 75 | 621 | 2961 | \| 334 | 46271 | 413811 | \|11296| | 6863\| |
| | 1 | $\mathrm{n}=201$ | $\mathrm{n}=191$ | $\mathrm{n}=161$ | \| $\mathrm{n}=9$ | $\mathrm{n}=19$ \| | $n=14$ | n=20\| | $n=201$ |
| | 1 | | | | | | | | |
| B. Iuteum | Mimimum | 4 | 7 | 7 | 56 | 94 | 639 | 2164 | 2395 |
| | \| Lower Quartile | 16 | 111 | 761 | \| 87 | 8731 | $1077 \mid$ | 2680\| | 2824 |
| | \| Median | 26 | 22 ! | $106 \mid$ | \| 100 | 14331 | 1156 | \| 3028| | 32881 |
| | 1 Upper Quartile | 45 | 231 | 2221 | \| 133 | 20451 | 1373\| | [4325\| | 34801 |
| | \| Maximum | \| 179 | | 1001 | 289 | \| 175 | 3623 \| | 16931 | 7990\| | 3658 \| |
| | 1 | $n=231$ | $\mathrm{n}=13$ \| | $\mathrm{n}=171$ | $\mathrm{n}=8$ | $n=20\}$ | $n=9$ | $\mathrm{n}=231$ | $n=141$ |
| | | | | | | | | | |

A comparision of our data with those mentioned by other authors as not available because of lack of informations on this subject using these fishes on Turkish coasts. But, comparing with those feported from different areas of Mediterranean using similar kind of ishes, the heavy metal accumulations was not exeeded them (UYSAL, 978; BARGAGLI at al. 1986).

However, the levels Pb indicated that we mustn't neglected it although the values are not high now.

aeferences

BERNHARD, M., 1976. Manual of metods in aquatic environment research: Part 3. Sampling and analyses of biological material. faO fish. rech. Pap. 158: 124 p .
CLAUSSEN, T., 1988. Levels and spatial distribution of Trace metals in Dabs (Limanda_limanda) of the Southern North Sea. Mitt. Geol.-Palaont. nst. Univ. Hamburg Heft 65:467-496.
rukey, J.m., 1977. Exploratory data analysis - Reading, Mass. Addision- Wesley Publishing co.: 473 p .
YSAL, H. and TUNGER, S. 1978.ACcumulation and distribution of heavy metals in some marine organisms in the bay of Izmir and Aegean Coasts. bargagli, r., Barghigiant, c., Gioffre, d., pelegerint, d. and torti, M., 1986. Preliminary results on total Mercury and Methyimercury collected in the Northern Tyrrherian Sea. Rapp. Comm. Int. Mer Médit., 30, 2: 109.

V-V1

Aquaculture Production in Greece, 1980-1988

I.-N. ARGYROU* and K.-l. stergiou**

- institute of Technological Applications Hollenic Productivity Centre, Athens (Greece)
-*National Centre for Marine Research, Agios Kosmas, Hellenikon, Athens 16604 (Greece)

ABSTRACT

Aquaculture production (excluding lagoons) in Greece increased from 2,000 tin 1980 to $3,900 \mathrm{t}$ in 1988 with a mean production of $2,340 \mathrm{t}$ representing $1-2 \%$ of the mean annual fishery production
in Greek waters. the mean $1986-1988$ production was allocated as follows: 1983 t trout 233 carp, 132 t sea bream/sea bass, 570 t mussels, and 51 t other species (of which 7 t eels). The mean 1984-1986 production represented 0.4% of the mean (1984-1986) Mediterranean aquacul ture production. A quadratic trend model explained 85% of the variability of aquacuiture produc
tion in $1980-1988$ and forecasts for 1992 amount to 7900 t INTRODUCTION
Although aquaculture experience in Greece goes back to the 1950 's, it is only since 1980 that
aquaculture developed systematically; from 1981 to 1988 more spent for the development plant of marine aquaculture (ANONYMOUS 1990) whereas more than spent for the development plant of marine aquaculture (ANONYMOUS 1990) whereas more than
100 million USD were planned to be invested fore
aquaculture during 1987aquaculture dunving 1987 -
1991 (KALLIFIDAS 1990). Here aquaculture production
Greece
 1980-1988. Yet, sunce
forecasting of aquaculture
production will be beneficial for the development of of
aquaculture intrastucture,
forecasts are developed forecasts are developed
using decomposition (trend
analysis) time-series techniques.
MATERIAL AND METHODS
Annual aquaculture production in Greece (excluding
lagoons) for $1980-1988$ and production per species (1986-1088) are taken from
the Ministry of Agriculter the Ministry of Agriculture,
KALLIFIDAS (1990) and ARGYROU (1990). Trend analysis was used to model
 iv in-sample ($1980-1988$) and out-ot measures of forecasting accuracy were computed: (1) Absolute Percentage Error, APE, (2) Mean Absolute Percentage Error MAPE, and (3) Mean Error (according to MAKAIDAKIS' et al.' 1983) and the coefficient of determination (according to SAILA et al. 1979)

RESULTS AND DISCUSSION

Aquaculture production (excluding lagoons) in Greece increased from $2,000 \mathrm{t}$ in 1980 to $3,900 \mathrm{t}$ in 1988 (Fig. .) with a mean production of 2,340 t representing $1-2 \%$ of the mean annual fishery production in Greek waters (STERGIOU 1990a). The mean 1986-1988 production was allocated
as follows (Fig. 2): 1983 t trout, 233 t carp, 132 t sea bream/sea bass, 570 t mussels, and 51 t other species (of which 7 t eels). The mean (1984-1986) production amounted 2,000 t repre1989). The mean (1984ranked fourth in the Meditteranean salmonid produc-
tion representing about 2% tion representing about 2
of the mean (1984-1986) of the mean (1984-1986) (=
$66,000 \mathrm{t}$; France, Italy and Spain made up more than
90% of salmonid production during
1989).
Production perm 1986-1988 increased during nificantly for mussels (from
15 t ffarm to $46 \mathrm{t} /$ farm
and carp (from 5 t/farm to 14 t/piant) whereas it did not ex for the remaining species
(ARGYROU 1990).

Etrout
$\square \mathrm{Carp}$
Ebass/b
$\nabla_{\text {mussel }}$
Wother

Forecasting as applied to
biological systems is mainly
Fig. 2. Mean (1986-1988) aquaculture production per species (excluding
lagoons) in Greece
oriented towards modeling on the basis of: (a) explanatory, regression techniques (simple, multiple, categorical) which take into account other input variables, and (b) stochastic, time series tech niques that treat the system as a black box (AutoRegressive integrated Moving Average models transfer function models, spectral analysis) (see STERGIOU 1989, 1990b). These techniques can
not be applied to our data because (a) the factors that mainly affect aquaculture production in not be applied to our data because (a) the factors that mainiy affect aquaculture production in
Greece (e.g. such as technical and scientific expertise, management skils) cannot be parameterized, and (b) production time-series is short. Hence, a simple, decomposition method (trend analysis) was used to model and predict aquaculture production. Decomposition methods try to identify components of the basic underlying pattern and forecasting is based on extrapola-
tion each of these component patterns separately and recombining them into a final forecast. The following quadratic trend cuve was fitted to the $1980-1988$ data: $X_{t}=3.12-0.65 T+0.08 T^{2}$, where
$X_{t}=$ production (in $1000 t$ and $T=$ time. ME and MAPE were estimated to be 0.0 and 9.5% $X_{t}=$ production (in $1000, t$ and $T=$ time. ME and MAPE were estimated to be 0.0 and 9.5%
respectively. APE ranged from 3.3 to 15.9%. The model explained 85% of the variability of respectively. APE ranged from 3.3 to 15.9%. The model explained 85% of the
aquaculture production in $1980-1988$ and forecasts for 1992 amount $7,900 \mathrm{t}$ (Fig. 1).

Forecasting plays a central role in managerial decisions: it preceeds planning which, in turn,
preceeds decision making (MAKRIDAKIS et al. 1983). Forecasting of annual Greek aquaculture production within an APE ranging from 3.3 to 15.9% (MAPE $=9.5 \%$) is an important goal. Aquaculfure production in Greece is influenced by many factors and is confronted by all sorts of uncertainty (management skills, availability of tingernings avaliability of food, technical and scientric expertise). Yet accurate forecasts wif feed production both of which at present are mainly imported increasing the cost of products and render them not competitive for exportation), predict future prices, and planning exports and absorption by the local market.

REFERENCES

ANONYMOUS 1990. Greek Fishing News 103: 115-116 (in English)
ARGYROU, I.N. 1990. Greek Fishing News 103: 65-72 (in Greek)
GIRIN. M. 1989. AquaReview : 26: 31-34
KALLIFIDAS, G. 1990. Greek Fishing News 103: 52-56 (in Greek)
MAKRIDAKIS S. S WHEELWRIGHT \& V. MCGEE. 1983. Forecasting: methods and applications. John Wiley \& Sons,
SAILA, S.B., M. WIGBOUT \& R.J. LERMIT. 1979. J. Cons. int. Explor. Mer 39: 44-52
STERGIOU, K.1. 1989. J. Cons. int. Explor. Mer 46: 16-23
STERGIOU K.1. 1990a. Greek Fisting News 103: 31-38 (in Greek)
STERGIOU, K.I. 1990b. Fish. Bull. U.S. $88(2$ (in press)

