Temperature, light and nutrient based model on spring primary production for heavily eutrophied subtropical coastal waters (1)

Tufan KORAY and Baha BUYUKISIK

Ege University, Faculty of Science, Department of Biology, Section of Hydrobiology, Bornova, IZMIR (Turkiye)

LZMIK (Turkiye) Noxious algal blooms caused by toxigenic or non-toxigenic phytoplanktonic species during spring has attracted increasing attention worldwide especially since 1980's. Besides neurotoxic, paralytic and diarrhatic shellfish poisoning toxins, sometimes only anoxia has caused mass mortalities of many marine consumers during these toxic and/or nontoxic blooms (STEIDINGER, 1983; WYATT, 1990). In any case, these blooms have constituted a risk factor both as a threat to public health and aquaculture in sub-tropical regions such as eastern coast of Aegean Sea, Izmir Bay (JACQUES and SOURNIA, 1980; KORAY, 1987; MONTRESOR *et al.*, 1990). Although the impact of red-tides on some fish species has been documented since 1950's for the region (NUMANN, 1955; ACARA and NALBANDOCLU; 1960; KORAY, 1984; KORAY and BUYU-KISIK, 1988; KORAY, 1990), little is known how the primary and secondary ecological factors influence red-tides and other noxious spring phytoplankton bloomings. This study was conducted in the inner part of Izmir Bay in which "color-tides" were continuously observed between March and July. Bi-weekly or three weekly visits to the four sampling stations were carried out to provide a detailed time series. The water samples were collected from 0.5, 2.5, 5.0 and 10.0 m. with a Hydro-Bios water sampler (1.5 ¹²) and were stored in polyethylene bottles in the dark and cool carrying boxes for chemical analyses. Temperature and light were determined *in situ*. Inorganic nutrigenous nutrients, silica phosphate, pH, salinity, Ch-a and phaeopigment determinations were realized in the laboratory according to the procedures of STIKCLAND and PARSONS (1972). In this study, an empirical multiple regression model was used to develop a predictive evaluation buyean denormant wardiable Chea and the huvier-chamicals that were threaded paredictive

Sammy, Cura and phaeopigment determinations were realized in the laboratory according to the procedures of STRUCKLAND and PARSONS (1972). In this study, an empirical multiple regression model was used to develop a predictive equation between dependent variable Ch-a, and the physico-chemicals that were thou-th to be independent but potentially important to physioplankton production during spring buomings. Standardization of the dependent and independent variables (n=109 for each variable) were required to eliminate the effect of differences in measurement scale, to show the relative standardized strenghts of the effects of independent variables on the Ch1-a and stabilize the variance. For prediction equation, $10g_{10}(Y_1+1)$ transformation was preferred to simplify conversation to original measurement units and to normalize the data. The stepwise selection procedure was used to obtain estimate of the regression coefficients and significant relationships. The standardized data were also used for PCA. The multiple regression equation in standard format with orthophosphate P, temperature, light, Si, ammonium N and nitrate N was highly significant (F = 17.551, p < 0.05) respectively and explained 52 % of the total variance in the data (Table D. The standard partial regression coefficients indicated that as P, temperature, light and nitrate N increased, Ch1-a increased. Table I: Parameters of multiple regression equation in standard format for dependent variable Ch1-a (standardized variables).

Variables	Reg.	Coeff. F	Sig. level
Orthophosphate P	0.499	20.474	0.000
Temperature	0.358	20.241	0.000
Light	0.288	15.656	0.000
Si	-0.217	5.369	0.022
Ammonium N	-0.214	5.306	0.023
Nitrate N	0.152	4.029	0.048

Si and ammonium N are inversely correlated with the Chl-a increases. This pattern clearly established Si tontrolled bloom succession. Although P was the most important parameter affecting the equation, it was never limiting because of rapid recycling

and continuous inputs from sewage. For predictive purposes, conventional regression without intercept was obtained as function of the same variables;

 $\log(\text{Chl-a+1}) = 1.445\,\log(\text{PO}_4\text{-}^3\text{+}1) + 0.676\,\log(\text{T+1}) + 0.132\,\log(\text{L+1}) - 0.518\,\log(\text{SiO}_4\text{+}1) - 0.128\,\log(\text{SiO}_4\text{-}1) - 0.128\,\log(\text{Si$ log(NH+4+1) + 0.199 log(NO-3+1)

 $\log(NFt_4+1) + 0.199 \log(NC_3+1)$ The six environmental independent variables described 92 % of the total variance in predictive regression equation, however, effects of ammonium and nitrate were almost negligible in the final predictive regression (p < 0.46). The principal component analyses performed on the standardized nutrients, primary ecological factors, light, primary (Chl-a) and secondary (phaeopigments) production units described 95 % of the total variance within the nine PCs. The first seven PCs which were used to calculate multiple regression equations explained 88 % of the variation in production during blooming season. The eigenvectors were included in Table II. Practically, the first PC can be interpreted as a nutrient concentration and biomass component (P, ammonium N, Si and Chl-a). PC 2 summarized biomass and photosynthetic activity (Chl-a, DO, pH, nitrite N) while the other PCs were generally interpreted as nutrient and primary ecological factor components. components.

Table II: The component weights of the first seven PCs.

Variables	PC 1	PC 2	PC 3	PC 4	PC 5	PC 6	PC 7
P	0.516	-0.148	0.083	-0.092	-0.049	0.059	-0.016
Ammonium N	0.351	-0.260	-0.319	-0.022	-0.260	-0.210	-0.454
Nitrate N	0.127	0.139	-0.360	-0.038	-0.733	0.118	0.253
Light	0.232	0.279	-0.279	0.309	0.287	-0.397	-0.130
Temp.	0.258	0.289	0.320	-0.495	-0.080	-0.112	0.008
Si	0.384	-0.291	0.239	0.262	0.023	0.015	-0.309
Chl-a	0.338	0.449	0.055	-0.105	-0.053	0.148	0.081
Oxygen	0.055	0.486	0.378	0.113	-0.000	0.126	-0.342
Ha	0.007	0.434	-0.414	0.324	0.101	0.044	-0.030
Nitrite N	-0.262	0.037	0.251	0.420	-0.431	0.275	-0.030
Salinity	0.177	-0.041	0.368	0.486	-0.175	-0.409	0.556
Phaen nig.	0.331	-0.127	-0.092	0.200	0.272	0.697	0.262

Both multiple regression coefficients and principal components indicated that phytoplankton biomass during blooms increased with increasing P, nitrate N, light and temperature. Species succession was mainly controlled with SI. These informations also suggest that phosphorus controls the amount of phytoplankton biomass in red-tide season, however, phosphorus loading in the system is adequate and never limiting in eutrophied Izmir Bay

REFERENCES

ACARA A. and NALBANDOCLU U., 1960.- Rapp. Comm. int. Mer Médit., 15, 3. JACQUES G. and SOURNIA A., 1980.- Vie Milleu, 29, 2, 175-187. •KORAY T., 1984.- E. U. Faculty of Sci. J., B, 1, 7, 75-83. KORAY T., 1990.- Rapp. Comm. int. Mer Medit., 32, 1. KORAY T., 1990.- Rapp. Comm. int. Mer Medit., 32, 1. KORAY T., BUYUKISIK B., Rev. Int. 40 Ceanogr. Medicale, 141, 25-42. MONTRESOR M., MARINO D., ZINGONE A. and DAFNIS G., 1990.- In: Toxic Marine Phytoplankton, Elsevler, 82-97 or. NUMANN W., 1955- Hidrobiyoloji Mec., A, 3, 2, 90-93. STEIDINGER K. A., 1983- Prog. Phycol. Rs., 5, 147-188. STRICKLAND J.D.H. and PARSONS T.R. 1972- Bull. No. 167,Fish.Res.Bd.Canada 310 p. WYATT T., RECUERA B., 1990. Biol. Env. Sci. Tox., Elsevier, 33-36.

(1) This study was supported by FAO project TUR 24/H.

Phytoplankton blooming and zooplankton swarms in eutrophied zones of Aegean Sea (Izmir Bay) (1)

Tufan KORAY*, Baha BUYUKISIK*, H. Avni BENLI** and Sevket GOKPINAR***

*Ege University, Fac. of Sci., Biology Dept., Hydrobiology Sec., Bornova, IZMIR (Turkiye) **Eylul University, Marine Science and Tech. Ins.,Urla, IZMIR (Turkiye) *Ege University, Fishery College, Urla, IZMIR (Turkiye)

The ecological importance of the phytoplankton blooming and zooplankton swarms have become little recognized in the Eastern Mediterranean and Aegean Seas. However, the effect of eutrophication on this events has been shown in the past decade (AUBERT et AUBERT, 1988; KORAY, 1990; STIRN, 1988), particularly on ciliated protozoans and micrometazoans (REVELANTE et al., 1985) in the Mediterranean and Adriatic Seas. In the Eastern Aegean Sea and Izmir Bay w¹ 'ch are under the effects of discharges of Izmir city, eutrophic increase in biomass of i hyto-, protozooplankton and micrometazoans have been reported by JACQUE: and SOURNIA (1980), KORAY (1988) and KORAY et al., (1990).

The purposes of this study were to obtain an updated species list of blooming and/or swarming plankton for Eastern Aegean coasts and to quantify their basic ecological properties

properties. The samples which were evaluated in this study were collected from 1990 to 1992, with sampling concentrated in spring-summer with bi-weekly periods. Monthly or bi-monthly sampling was carried on during autumn and winter. Quantitative bottle and qualitative net samples were collected regularly. Species determinations were mainly realized with living specimens. However, formalin and lugol preserved material were used for enumeration of settled samples.

At the end of the observations, twenty nine species of marine plankton representing ten different classes were identified (Table I). Phytoplanktonic members of the list clearly showed a yearly succession and their total biomass increased from oligotrophic Clearly showed a yearly succession and their total biomass increased from oligotrophic toward the eutrophic zones of the bay. During the pronounced and widespread blooms of dinoflagellates (*P. micans*, *N. scintillans*, *A. minutum*, *G. simplex*, *S. trochoidea*), seawater was strikingly discoloured red. Coccolithophorides, diatoms and euglenoids were also associated with different discoloration of seawater such as milky (*E. huxleyi*)

were also associated with different discoloration of seawater such as milky (*E. huxleyi*) or green (all the diatoms, euglenoids and prasinophytes). The increases of tintinnid populations were closely related to the blooms of the same species of phytoplankton. Both *F. campanula* and *H. subulata* formed swarms during diatom *N. closterium* blooming in the inner eutrophied zone of the bay. The non-tintinnid ciliate *M. rubrum* exhibited its own characteristic periodicity and were observed during particular upwelling periods. The neutsonic patches of the radiolarian *S. zanclea* were most pronounced in less eutrophied mixing zones. The swarms of the tenporter *B. hydatina* were dependent on the wind direction during the late spring and were clearly associated with *N. scintillans*, also drifted by wind on the surface. However, a clear predator/prey relationship between the dinoflagellate and tenophore could not be implied. The well-known grazers, *A. clausii, O. nana* and their nauplii, meta-nauplii formed huse swarms in the eutrophied zones of the bay. and ctenophore could not be implied. The well-known grazers, A. clausii, O. nana and their nauplii, meta-nauplii formed huge swarms in the eutrophied zones of the bay in summer and middle autumn. The tintinnid F. campanula can compete efficiently with A. clausii and O. nana for similar phytoplanktonic food under eutrophied conditions. The planktonic swarms along the Eastern coasts of Aegean Sea and in Izmir Bay were mainly wind dependent when they located at surface waters and/or partly neustonic (e.g. N. scintillans, S. zanclea and B. hydatina). However, the gradual increase in phytoplankton, protozooplankton and micrometazoa blooms and/or swarms is probably related to the eutrophication, availability of nutrients and food size of the prev crop. ot the prey crop

Table I : Blooming and/or swarming species of plankton of the Eastern coast of Aegean Sea and in Izmir Bay during the years 1990-1991.

Species	Date (Mor	ths)	Temp. (°C)	Sal. (%0)	
	1990	1991			
DINOPHYCEAE					
Alexandrium minutum	4,5	4	15.5-19.4	37.63-38.00	
Gonyaulax polyedra	4,5	-	16.3-18.6	37.56-37.93	
Gymnodinium simplex	3,4,5	4,6	15.5-16.3	37.51	
<u>Gyrodinium spirale</u>	4,5	4	15.5-16.5	37.03-37.85	
Noctiluca scintillans	3,4,5,6	3,4,5,6	15.5-20.8	37.51-39.25	
Oxytoxum scolopax	4,5,6	4	15.5-25.6	37.63	
Prorocentrum micans	2,3,4,5,6	4	10.2-25.6	36.20-39.25	
P. minimum	3,4,5	-	15.5-22.3	37.56-38.28	
P. triestinum	4,5,6	4,6	15.5-25.6	37.60-39.25	
Protoperidinium steinii	4,5	4	15.5-22.6	37.63-38.05	
Scripsiella trochoidea	3,4,5	4	15.5-22.6	37.51-38.00	
PRYMNESIOPHYCEAE					
Emiliania huxleyi	5,6	5,6	22.5-25.6	36.88-37.60	
CHRYSOPHYCEAE					
Bicoeca mediterranea	5,6	5,6	18.0-25.6	36.88-37.35	
BACILLARIOPHYCEAE					
Nitzschia closterium	3,4,5	4.5	15.5-22.3	37.51-38.27	
N. pungens	4.5	4.5	15.5-22.3	37.63-38.00	
Thalassiosira allenii	5.6	4.5.6	18.0-25.6	36.88-37.43	
F. anguste-lineata	3.4.5	4	15.5-22.3	37.51-38.05	
EUGLENOPHYCEAE					
Eutreptiella cf. lanowii	6.7	-	18.0-22.3	36.88-37.43	
E. gymnastica	5.6.7	4.6	15.5-22.3	36.88-37.05	
PRASINOPHYCEAE		- , -			
Pyramimonas propulsum	5	5	20.8-21.0	36.00	
RADTOLARTA	-	-			
Sticholonche zanclea	3.4	3.4	15.5-18.2	37.27-38.2	
CTLTATA	• / .	»,.	1913 1012	57127 5012	
Favella campanula	5.7	-	18 0-22 3	38 66	
Helicostomella subulata	3	4 5	13 7	37 51-37 82	
Fintinnoneis cylindrida	ă	.,	16.2	37 6	
Mesodinium rubrum	4 10	4 10	15 5-20 2	37.4	
TENOPHOPA	4,10	4,10	13.3-20.2	21.4	
Bolina budatina	5 6	5 4	70 0-77 0	26 02-26 00	
Collega CP3	5,0	2,0	20.0-22.9	20.04-20.00	
LRUBIACEA	7 0	7.0	22 0 26 5	27 62 28 06	
ACATLIA CIAUSI	1,9	1,9	21.9-20.5	37.02-38.96	
Jentropages Kroyer1	2 0	7 0	43.0	38.80	
Jitnona nana	7,9	1,9	21.9-26.5	31.64-37.96	

REFERENCES

AUBERT M. and AUBERT J., 1988.- UNEP/FAO/MAP Technical Rep. Ser. 21:81-90. JACQUES G. and SOURNIA A., 1980.- Vie Milieu AB "1978-79", 28-29 (2), 175-187.

KORAY T., 1988.- Doga, 11 (3) : 130-146. KORAY T., 1990.- Rapp. Comm. int. Mer Médit., 32, 1, 212.

KORAY T., BUYUKISIK B. and GOKPINAR G., 1990.- Rapp. Comm. int. Mer. Médit., 32.1.129 REVELANTE N., GILMARTIN M. and SMODLAKA N., 1985 .- J. Plankton Res., 7 (4):

STIRN J. 1988.- UNEP/FAO/MAP Technical Rep. Ser. 21:161-188.

(1) This study was supported by FAO project TUR 24/H

Rapp. Comm. int. Mer Médit., 33, (1992).

Rapp. Comm. int. Mer Médit., 33, (1992).