

Macrozoobenthic communities present state in Varna and Beloslav Lakes adjacent to Black

Ts. KONSOULOVA

Department of Marine Biology and Ecology, Institute of Oceanology, VARNA (Bulgaria)

Beloslav and Varna lakes were fresh - water firths with a little flow into Black sea up to 1909 when after digging a channel between the sea and Varna lake its salinity rose considerably (8 - 13%). Further there were a number of changes in this lakes as a result of human activity as follows: 1923 - the channel between the two lakes was dug; 1954 - the first plants in the Devnya chemical industrial complex were built: 1968 - "Varna" Thermo -electric power station and its harbour were put into operation; 1974 - "Varna -West" harbour was opened; 1976 the second Varna lake - sea channel was dug. In fact since 1970 the Beloslav lake - Varna lake - Varna bay zone has been an area exposed to the cascade - like west - east influence of anthropogenic factors and the lakes have become a buffer - zone holding pollution back. So they have completely lost their self - purification ability and their salinity is almost the same as that of the sea water (15 - 16% at present). Numerous faurinistic and biocoenological investigations in the lakes have been carried out in different periods (VALKANOV, 1935; CASPERS, 1951; KANEVA - ABADJIEVA, 1957; KANEVA - ABADJIEVA *et al.*, 1967). From the last 25-30 years there haven't been data about the benthic zoocoences therefore in 1990-91 the present investigations were carried out. From 7 sampling stations in the Beloslav lake and 15 stations in Varna lake were taken samples by Birdge - Ekman grab (0.44 m2)(Fig. 1). The data obtained were used for determining the communities structure, calculating Shannon - Weaver's information index H and kombined K-dominance curves for species abundance/biomass comparison too (ABC method) (WARWICK *et al.*, 1987).

power station; SP - Varna town sewage plant. A total of 7 species and groups are registered in the Beloslav lake, out of which 3 Annelida (*Nereis diversicolor, Melinna palmata, Oligochaeta*), 3 Crustacea (*Gammarus subtypicus*, *Pontogammarus sp., Palaemon elegans*) and *Chironomidae larvae*. The greatest number of species are established in summer (5), while in the rest of the seasons they are 2. The mean density, formed preliminary of *Ch. larvae* (96.8%) is highest in summer (29321 ind.m-2); in spring and winter it is 7155 and 10697 respectively. The mean biomass composed mainly of *Ch. larvae* too (95.5%) is highest in winter (38.8 g.m-2) and lowest in summer (11.52) in accordance with the dominant organisms development cycle specificity. H index (calculable only in two stations - 8 and 12) is extremely low - average 0.05. According to the ABC graph-plots the macrozoobenthic communities are "grossly polluted" in st.8 and "moderately polluted" in st.12 in summer. A typical phenomenon here is the presence of two types of strongly destructed zooceonoses: 1/totally lacking living organisms - dead zones; 2/ monospecies zooceonoses. The western part of the lake is a dead zone throughout the year (st.6). It is reduced gradually to east where monospecies coenoses are established in the southern coastal zone and fairway, while along the northern coast a weak trend of improvement of macrozoobenthic species and groups out of which 17 Vermes, 12 Crustacea and 12 Mollusca are registered in the Varna lake. Vermes prevail in density - from 94.0% in winter to 71.2% in summer. The mean density is highest in spring (8449 ind.m-2) composed mainly of *Nereis diversicolo, Nereis succinea, Polydora ciliata* and Oligochaeta and lowes in autumn (2194). Maximum annual density is registered in the almost singular monospecies zoocenosis situated in the 1st lake sea channel zone (st. 26) - 15658 (*Capitomastus minimus*) and the minimum (8b) - in the fairway zone west of the Varna town sewer discharge (222) Vermes prevail in the biom

g.m-2) density.

density. The information index H varies between 0.55 in autumn to 1.1 in summer. It is lowest (0.25) in the minimum density and biomass area and highest (1.72) - in the second lake - sea channel. There are two dead zones throughout the year in this lake - in front of "Varna" TPS (st. 17) and in front of the town sewage plant (st. 24). In almost all the other stations the H-index is extremely low - from 0.2 to 1.0; the ABC graphplots configuration characterizes some communities as "moderately polluted" and other as "grossly polluted" depending on the season. "Unpolluted" are only two zones - farest from the dead zones (st. 14 and st. 19) whose H - index is 1.6. Conclusions

1/Most critical is the zoobenthic coenoses status in the Varna and Beloslav lakes in autumn when the dead zones are 8.

When the dead zones are 8. 2/Totally lacking living macrozoobenthic organisms throughout the year are those areas exposed to industrial and sewage pollution. 3/The. presence of "unpolluted" communities in separate limited zones allow us to consider that a certain stabilization and gradual restriction of the zoobenthos is possible after restriction or stopping the pollution.

REFERENCES

CASPERS H., 1951.- Arch. Hydrobiol., 45, 1 - 192. KANEVA-ABADJIEVA V., 1957.- Proc. Mar. Biol. 5t. 19, 127 - 154. KANEVA-ABADJIEVA V. & MARINOV T., 1967.- Proc. NIORS, 8, 177 - 194. WARWICK RM., PEARSON T.H. & RUSWAHYUNI, 1987.- Mar. Biol. 95, 193 - 200. VALKANOV A., 1935.- Ann. Sofia University 31, 1 - 55.