In autumn 1989 a wide angle reflection and refraction seismic (WARRS) survey was carriec out in the Betic Cordillera by the Institut für Geophysik, Universität Hamburg and th Instituto Jaume Almera, Barcelona. The figure below shows the location of the shotpoint and recorded profiles. Three quarry blasts (P1P3), four landshots (J1, H1, H2 and L) wer recorded along three profiles. In addition, two seashots (X, E) fired during the ILIHA (Iberiar Lithosphere Heterogeneity and Anisotropy) project were also recorded along profile II an profile III respectively.

Profile I is about 270 km long and spans from the Iberian Massif to the External and Interna Betics. The results of the ray-tracing modelling, controlled by synthetic sections, show that the lower crust of External Betics consists of two layers. The upper part of the lower crust has velocity of about $6.4 \mathrm{~km} / \mathrm{s}$ which overlies a layer with a velocity of $7.0 \mathrm{~km} / \mathrm{s}$. In contrast to this, the lower crust in the Internal Betics seems undifferentiated, having a velocity of 6 . $\mathrm{km} / \mathrm{s}-6.7 \mathrm{~km} / \mathrm{s}$. The Moho has a dind $\mathrm{km} / \mathrm{s}-6.7 \mathrm{~km} / \mathrm{s}$. The Moho has a depth of about 36 km in Iberian Massif and deepens quickly is found at about 43 km depth and the high vocity laye ($7.0 \mathrm{~km} / \mathrm{s}$) disappears. SE of is found at about 43 km depth and the high velocity layer ($7.0 \mathrm{~km} / \mathrm{s}$) disappears. SE of th ransture described above suggests that the crust belo. Ts to different crust domains. Th External Betics with a lamellae of high velocity $(7.0 \mathrm{~km} / \mathrm{s})$ in the lower crust belongs to th passive continental margin of the Iberian Plate, while the Internal Betics belongs to th Alboran Domain. Such a lamellae with high velocity of $7.0 \mathrm{~km} / \mathrm{s}$ in the lower crust is als found in the Valencia Shelf (MAUFFRET et al 1992) MAUFFRET et al (1992) proposed tha ound in the Valencia Shelf (MAUFFRET et al. 1992). MAUFFRET et al. (1992) proposed tha event. Profil
Profile II, lying in the Internal Betics and runing WSW-ENE, shows the existence of prominent reflector at $9-13 \mathrm{~km}$ depth between the upper crust and the lower crust
Compaired with Profile II, profile III (SW-NE) Iying in the easternmost Internal Betict Compaired with Profile II, profile III (SW-NE) Iying in the easternmost Internal Betic
shows totally different features. The crust here is undifferentiated. The reflector between the upper and lower crust is absent. The Moho depth varies from 25 km in NE to 27 km in the center part and rises again towards SW. At the SW end of profile III the Moho is only 19 km deep. It is much shallower than the Moho under $\mathrm{H} 1(30 \mathrm{~km})$ though the distance between th both is only about 20 km ! These features may be caused by the Betics Sinistral transcurren shear zone from Almeria (SW) to Alicante (NE) which may be associated with its extension to the northeast (Balearic Islands fringe) and to the southwest (Eastern Rif in Morocco) a proposed by DE LAROUZIERE et al. (1988). The residual Bouguer anomalies seems to verif) the presence of the transcurrent shear zone described above.
Furthermore, the WARRS results were also controled by gravity-modelling using the new terrain corrected Bourger gravity maps.

REFERENCES

MAUFFRET A., MAILLARD A., PASCAL G., WATTS A.B., TORNE M., BUHL \& PINET 1992. - Long listening multichanel seismic proniles in the Valencia Trough (VALSIS 2) and he Gulf of Lions (ECORS) : a comparison.Tectonophysics, special issue: The Valencia Trough, in press.
DE LAROUZIERE F.D., BOLZE J., BORDET P., HERNANDEZ J., MONTENAT C. \& OTT D'ESTEVOU P., 1988. - The Betic segment of the lithospheric Trans-Alboran shesr zone during the Late Miocene. Tectonophysics ${ }_{2}$ 152: 41-52.

