Heavy metal concentrations in selected marine species from fisheries bays of Aegean coast

Hüseyin UYSAL

Ege University, Faculty of Sciences, Dept. of Biology, Hidrobiology Section, BORNOVA/IZMIR (Turkey)

As indicated before Aegean coastline is long and has a large number of fishery areas, Bay and Estuaries (UYSAL, 1980; DEMIRKURT et al., 1990). Due to increased industrial, touristic urban and agricultural activities important quantities of chemical pollutants are entering our coasts from different sources. Those waste disposals are affecting the ever increasing portion of our bays of coastal regions. The pollution results in a demunition of edible organisms and decrease in the quality of marine life. It also effects human health through food chain. For this reason, the knowledge of levels of pollutants in edible marine organisms is important for the public health (ANDREOTIS and PAPADOPPOLOU, 1982). However, in recent years considerable amount of work has been carried out in relation to the accumulation and distribution of heavy metals in the marine biota (BEI et al., 1990). The purpose of this survey is to determine the level of heavy metals (Cu,Mn,Zn,Fe,Pb,Cd) in selected species in polluted and unpolluted part of our Aegean coasts.

In this study the samples considered are Tapes decussatus L. Patella Spp, Mytilus galloprovincialis Lam, Cardium edule L., Sepia officinalis L., Natica millepunctata Lam., Mugil Spp, Solea vulgaris vulgaris, (QUENSEL, 1804), Anguilla anguilla L., Diplodus annularis L., Dicentrarchus labrax L., Ulva Spp., Enteromorpha Spp, Cladophora Spp. These were collected from different polluted coastal regions (especially Izmir Bay and its vicinity) (Fig. 1).

Were confected from different pointed coastal regions (especially 12.11.11 bay and its victuary) (Fig. 1).

All samples were wet digested with HNO3, HClO4 (5:1) and HCl, by heating on a hot-plate and analysed by using "Varian Techtron Atomic Absorption Flame Spectrophotometer Model 1250".

Figure 1. Sampling side a long in Aegean coast line

The concentration of each heavy etals The concentration of each neavy metals was determined separetely in selected marine species in the different sampling areas from our coasts (Fig.I, Table 1). As can be seen from the table too, the heavy metal concentrations show variations depending on the species and locality. In general the levels of heavy metal concentration are as follows: Fe>Zn>Cu>Mn>

Pb>Cd.

concentration are as follows: PE>ZIN-CUD-MIN> PD>Zcd.
There are still nontoxic levels in the mentioned species that could be dangerous to the consumers, but it will be better to continue periodically the regional comperative survey on the pollution effects on the representative indicator species of the different marine biotops for the benefit of public health.

Our present results have been varified and the values obtained are within acceptable limits when compared with those other parts of the Aegean Sea (UYSAL, 1980, BEI et al., 1990). However, heavy metal levels of mentioned food chain organisms may not be taken into account for today, but in the very near future it's alarming that there will be some hazardous conditions if more effective and serious legislations would not be held urgently. legislations would not be held urgently.

Table 1. The levels of heavy metals which were determined in some edible marine species collected from Aegean coasts ($\mu g/g$ Dry Weight)

		Species	Dry weight %	Cu	Mn	Zn	Fe	Pb	Cd
		Tapes decussatus L.	18.8	4.556	7.874	113.38	268.50	1.417	2.362
		Mytilus galloprovincialis L		2.260	4.785	162.67	118.18	2.153	0.478
		Patella spp.	28.9	2.638	5.838	93.46	731.50	1.227	1.25
1 Aliaga Bay		Sepia officinalis L.	23.7	0.655	0.328	26.56	12.90	0.197	0.32
	•	Natica millepunctata	18.0	11.700	3.000	131.00	106.00	1.800	1.00
		Ulva spp.	17.2	2.946	8.298	21.57	223.23	1.493	0.41
		Enteromorpha spp.	23.3	0.810	7.044	9.89	415.93	0.295	0.04
		Patella spp.	18.7	2,773	21.048	42.57	800.00	1.758	0.78
2 Foca Bay		Ulva spp.	22.0	1.556	31.456	19.86	264.90	0.596	0.66
		Enteromorpha spp.	25.4	2.789	35.882	35.54	462.99	0.612	0.17
		Tapes decussatus L.	17.6	4.112	9.412	44.70	131.76	3.176	2.35
		Patella spp.	22.6	3,699	14.121	79.09	583.00	1.323	1.24
	Homa	Mytilus galloprovincialis l		5.959	18,413	2995	107.67	1.849	1.36
	Fishery	Cardium edule L.	18.9	2.439	87.046		375.13	2.332	0.51
	1 13.1.0.7	Sepia officinalis	23.4	6.428	2.143	21.42	15.71	1.285	0.35
		Solea solea vulgaris O	23.4	1.185	1.546	17.01	22.68	0.927	0.5
3 Izmir Bay		Mugil spp.	23.3	1.478	1.747	12.17	16.11	0.533	0.31
3 IZMIF Bay		Diplodus annularis L.	23.3	1.041	1.357	17.20	12.67	0.407	0.34
			14.3	1.298	6.104	9.10	1718.95	0.537	0.4
		Ulva spp. Enteromorpha spp.	13.5	2.333	52,708	35.17	583.33	1.333	0.44
	Çalıburnu fishery	Tapes decussatus L.	17.7	1.520	4.360	82.97	146.28	1.960	0.43
	Deniz.	Tapes decussatus L.	12.3	3.032	5,161	85.81	121.29	0.581	1.93
	Bostanlısı	Ulva spp.	21.7	4.700	13.000		958.00	2.700	3.00
	Çakalburnu Fishery	Tapes decussatus L.	20.0	2.850	4.830	83.80	384.73	0.869	0.24
	Sahilevleri (Înciraltı)	Venus verrucosa L.	17.5	1.628		142.34	640.02	2.54	1.36
	Kalabak	Patella spp.	19.6	4.259	59.26	51.85	544.44	5.000	5.5
		Enteromorpha spp	14.0	0.691	6.323	17.20	222.10	0.529	0.14
	Urla iskele	Patella spp.	25.7	2.149	7.476	61.68	119.25	2.523	2.8
	Karaburun	Patella spp.	28.4	1.783	4.651	74.42	810.00	1.395	7.7
		Ulva spp.	13.0	15.535	14.184	14.89	1096.09	2.553	0.7
		Patella spp.	14.0	3.833	13.333	93.33	281.50	4.500	5.0
		Ulva spp.	11.3	10.682	19.318	29.54	1331.82	3.068	3.4
4 Cesme Harbour		Enteromorpha spp.	12.7	11.848	32,203	44.54	286.89	3.715	2.5
	Kusadası	Enteromorpha spp.		2.011	3.940	9.65	183.86	1.580	0.8
		Mugil (Liza) ramada	21.7	1.326	29.392	16.88	31.69	0.636	0.4
		Diplodus annularis	25.5	0.950	2.066	19.42	1.612	0.743	0.83
		Dicentrarcus labrax	20.1	0.744	49.51	18.12	12.62	1.16 5	0.6
5 Kövceğiz		Anguilla anguilla L.	21.4	0.928	67.10	53.85	51.46	1.432	0.26
Fishery		Cladophora spp.	24.4	9.168	5.093	35.14	669.13	0.764	0.67
1 15 HCI Y		Enteromorpha spp.		0.695	81.64	28.52	983.34	1.711	1.90

REFERENCES

ANDREOTIS J. and PAPADOPOULOU C., 1982. - A study of the distribution of ehromium cobalt antimony and zinc in the edible Molluse Meretrix chionae from the Aegean sea. C.I.E.S.M./I.O.C/UNEP,VI.Workshop on Marine Pollution of the Mediterranean (Cannes, 2012) 42 (2022)

December 24, 1982).
BEI F., PAPATHANASSIOU and CATSIKI A.V., 1990. - Heavy metal concentrations in selected marine species from Milas Island (Aegean Seas) Rapp. Comm. Int Mer Médit, selected r 32,1(1990).

32,1(1990).

DEMIRKURT E., UYSAL H., PARLAK H., 1990. - The levels of heavy metals accumulation in some benthic organisms living in Izmir Bay. *Rapp. Comm. Int. Mer.Médit.*, 32,1(1990).

UYSAL H., 1980. - Levels of trace elements in some food chain organisms from the Aegean coast. *Ves Journées Etud. Pollutions*, pp.503-512, Cagliari, C.I.E.S.M.