Miro KRALJEVIC, Jakov DULCIC and Armin PALLAORO

Institute of Oceanography and Fisheries, SPLIT (Croatia)

The paper presents the data on some biological parameters of striped sea bream in winter and summer season from two habitats on the eastern Adriatic coast : estuary of the Mirna River-Tar Estuary (western Istrian coast) and Kastela Bay (middle Adriatic). Material was
collected in November 1989 and in July, August, and December 1990, and December 1991. A total of 330 spocimens were and in July, August, and December of which 197 originated from Tar Estuary Length-wight relationship (W $\mathrm{a} \times \mathrm{Lb}$), condition factor (PAULY, 1984)
frequency distribution after Bhattacharya's method (SPARE et al., 1989) were and length Length-weight relationship (Fig. 1) shows positive allometric growth of striped sea breated winter (Tar Estuary) and the negative one for fish collected in summer (Kastala Bay) in summer (Kastala Bay)

The value of b (Fig. 1) calculated for fish collected in November
and December in Tar Estuary and December in Tar Estuary
(3.050) does not significantly ($\mathrm{p}<0.01$) differ from 3, and that for fishes collected in July and August in Kastela Bay (2.694) is significantly different from 3 .
Condition factor of striped sea bream in summer (c.f. $=1.466$) fish in winter time (c.f. $=1.224$). Since striped sea bream mature between the end of July and mid August the condition factor is significantly different from 3 in summer. Method for separating length frequency distribution gave better age structure for fishes collected in November and December in Tar Estuary (Chisquare value $=14.492 ; \mathrm{x}^{2}=14.067$) than for striped sea gream collected in summer from Kastela Bay (Chi-square value $=9.865$; $\left.x^{2} .05(1)=3.841\right)$.

Fig. 1.- Length-weight relatlonship for the striped sea bream (Lithognathus mormyrus L.) in summer (Kastela Bay) and winter (Tar Estuary) season.

Brattecharya's nethod

${ }_{\substack{\text { Grouf } \\ \text { No. }}}$	mean			
$\frac{1}{1}$		1.042	34.980	
\%	24.76 20.85 80.	0.893 0.461	13.500 $=3.020$	2.982 3.175
	28.14	\bigcirc	21.050	2.335
S	3 30 33	-1.098	21.220	2.962
$\stackrel{\circ}{7}$	32.03 33.91	0.192 0.500	1.630 12.600	3.422

$\begin{gathered} \text { Skoup } \\ \text { No. } \end{gathered}$	mean	STANDARD DEV, (A.d.)	$\begin{aligned} & \text { POPuation } \\ & (N) \end{aligned}$	SEPARATION INDEX (S.I.
1	19.35	0.631	17.220	
$\frac{3}{3}$	24.13	-0.694	77.180	7.111
;	${ }^{29.43}$	0.633	32.880	3.458
5	31.07	0.268	11.040	${ }_{4.132}$

At 95% level of confidence, the expected distribution is signifi cantly different from the observed distribution for due to small number of young fishes ($1^{\circ}, 2^{\circ}$ and youn
3°.
Therefore, these studies should be continued

REFERENCES
PAULY D., 1984. - Fish population dynamics lin tropical waters : manual for use with programmable calcula programmable calcula tors. ICLARM Rev., (8): 325 p . VENEMA S.C., 1989. Introduction to tropical fish stock assessment Part 1-Manual. FAO Fish Tech Paper, 1306/1 84-122.

Fig. 2.- Total length frequency distribution (0.5 cm) with calculated of striped sea bream Lithognathus mormyrus L.) age groups from the Kastela Bay (summer season) and Tar
Estuary (winter season)

