Project OTPESEM: the fate of organic pollutants in the environment. Extractable organic matter

Tarek A. ABOUL-KASSIM^{1,2} and Bernd R. SIMONEIT

¹Environmental Organic Geochemistry Group, College of Oceanography, Oregon State University, CORVALLIS (U.S.A.) ²Oceanography Department, Faculty of Science, University of ALEXANDRIA (Egypt)

Project OTPESEM (Organic Tracers of Pollution in the Environment of the South-Eastern Mediter-ranean. The aim of the project is to: (1) identify specific organic molecular markers (hydro-carbons and PAHs) in aerosols, water and sediments; (2) assess fecal sterols and sterones as indicators of urban sewage inputs to Alexandria (Egypt) coastal waters; (3) provide prelimi-nary data on the levels and distributions of indicator microorganisms in domestic sewage-impacted areas for confirmation of pollution; (4) study the distributions, concentrations and fluxes of linear alkylbenzene sulfonates (LAS); and (5) carry out complete statistical analyses of the data in order to evaluate the transport pathways, the regions of concentration, the annual fluxes of information about the organic geochemistry of the Alexandria coastal environment. The lack of information about the organic geochemistry of the Alexandria coastal environment initiated this extensive study of organic pollution tracers in the Alexandria coastal environment initiated this extensive study of organic matter. In addition, identification of statistically significant end members, representative of the study area and a conceptual model of the environment of Alexandria coastal environment has been and is still discussed on a national and multinational scale. The problem is identified as industrial versus agricultural pollution on the hard and sewage pollution on the other. The domination of either depends mainly on the disposal location. The study area (Fig. I) lies off Alexandria between 31°08-31°26'N and 29°47-30°04'E, extending for about 38 km from El-Agami to Abo-Qir headland. According to the type of regional impact, the coastal waters can be divided into six main zones (Fig. 1). Zone I (beaches) receives a significant amount of untreated sewage (36x106 m3/yr); zone IV (Kayet Bey) receives domestic sewage from the main matropolitanpumping station (112x106 m3); zone V (El-Mex Bay) receives various industrial waters from several outfalls: agricultural Project OTPESEM (Organic Tracers of Pollution in the Environment of the South-Eastern m³/yr) and chlor-alkali plant (13x10⁶ m³/yr); and zone VI (El-Agami) is regarded as the reference area receiving little local discharge.

Figure 1: The study area of Alexandria City Figure 1: The study area of Alexandria City Surficial bottom sediments were collected from the study area using a modified Ekman methylene chloride-methanol. This extract after washing is a measure of the amount of extractable organic matter in the sample (%EOM). The extracts (EOM) were concentrated, hydrolyzed, separated into acidic and neutral fractions, esterified and fractionated by column chromatography. The following fractions were collected: F1 alkanes and alkenes, F2 monoaromatic hydrocarbons, F3 PAHs, F4 esters and ketones, F5 ketones, and F6 alcohols. Assessment of hydrocarbon pollution in a contaminated aqueous environment is generally not conclusive because of changes in waste water discharges, variation in the predominance of certain sources and/or irregular local emissions. The application of the concept that aquatic sediments act as pollutant sinks may overcome this drawback because sediments provide an integrated picture of the events taking place in the water column. For this reason, surficial sediment samples have been analyzed from the Alexandria environment. The %EOM in the reas is high compared with other contaminated coastal environment. The %EOM in the area is high compared with other contaminated coastal environment. The %EOM in the area is high compared with other contaminated coastal environment. The %EOM in the area is high compared with other contaminated coastal environment. The %EOM in the area is high compared with other contaminated coastal environment. The %EOM in the area is high compared with other contaminated coastal environment. The %EOM in the area is high compared with other contaminated coastal environment. The %EOM in the area is high compared with other contaminated coastal environment. The %EOM in the area is high compared with other contaminated coastal environment. The %EOM in the area is high compared with other contaminated coastal environments. The HC concentrations of the different extract fract

tter	Composition	in	the	Different	Zones	of	Alexandria	

				EXTRACT FRACTIONS (µg/g dry weight)					
ZONE	%0.C.	%EOM	% HC/EOM	F1	F2	F3	F4	F5	F6
I II & III IV V VI	2.08 3.07 3.60 4.10 1.50	0.4112 0.5565 0.7811 0.8910 0.0701	32.5 48.3 30.1 56.5 18.0	312 509 417 321 78	214 228 298 301 12	189 176 312 431 50	291 266 241 328 212	318 217 274 228 203	876 494 1871 256 212

V 1.50 0.0701 18.0 78 12 50 212 203 212 According to HAMILTON-TAYLOR (1979), a way to convert the sedimentation rate to a weight basis is to use the following formula: **Bulk sedimentation rate** (F)=R (1-p)d, where R= sedi-mentation rate, p= porosity and R= density. According to ABOUL-DAHAB *et al.* (1990), the sedimentation rate in El-Mex Bay is 0.85 cm/yr, and the average density and porosity of sediments in the bay are 2.6 g/cm³ and 0.75%, respectively. So, F will be equal to 0.6 g/cm²/y or 15 g/m²/d. Using the average hydrocarbon concentration in the sediments of El-Max Bay (1053 µg/g, Table 1), and given the surface area of the bay (19.4x10⁶/m²), the hydrocarbon sedimentary flux for the different fractions of the extract in El-Mex Bay were: 92, 86, 123, 94, 65 and 73 kg/d for F1 to F6, respectively. Q-mode factor analysis is based on grouping a multivariate data set based on the data structure defined by the similarity between samples. By applying this technique to our data, two significant principal factor loading scores were obtained, giving information about the sample variation of about 93.2% and 4.96%, respectively. The factor loading matrix represented the sample representation in the model and indicated the importance of each of the factors or end members in each sample. After varimax rotation of the composition scores, two significant end members resulted, dominated by the variables as fraction I (alkanes and alkenes) and fraction 6 (alcohols), respectively. Because the transfer of the original data variables during the analysis results in negative factor scores for some variables and negative concentrations of some variables in the end members, the use of a non-orthogonal rotation of one member vectors, toward the mean vector was used to bring the end members into positive vector space. By using a linear programming technique (LPT), a set of equations was applied for correcting the initial end member compositions and their abundance to better fit the observed multivariate data set. Th member compositions and their abundance to better fit the observed multivariate data set. This helped to specify and select the compositions of the end members, so that they are close to the true compositions. The alkanes and alkenes as the first end member is representative of the Alexandria environment, polluted with oil from ships in both its harbors and El-Mex Bay as well as waste water disposal. The importance of the second end member (alcohols) comes from the dominance of coprostanol (58-cholestan-38-ol) which is used as a fecal pollution indicator. In conclusion, a significant fraction (20%) of the total solvent extractable matter consists of inorganic salts which should be taken into consideration in quantitative analysis of HC. The reference zone is obviously different than the other polluted zones with varying levels HC. By applying factor analysis to these data, two significant end members were defined as alkanes & alkenes and alcohols, respectively. Future work concerning the molecular composition of the different fractions, qualitatively and quantitatively, will be useful in constructing the Alexandria environmental organic tracers model.

Haematological changes and light microscope study of peripheral blood cells in the European eel exposed to lead concentrations

Ekram M. AMIN

The National Institute of Oceanography and Fisheries, ALEXANDRIA (Egypt)

The increasing density of population and rapid development of industries, especially the chemical industries has created serious problems in water pollution. Trace elements introduced into the marine environment from effluents and river runoff, may be concentrated in marine organisms, this means that marine organisms can store pollutants with the variant form the pollutants. and then transfer them even to human beings.

The extensive studies on morphological and physiological changes in the blood of fish exposed to toxic chemicals and varying degrees of environmental stressors have beer documented by many authers. The purpose of this study was to determine the potential hazard of lead in water on fish which consider the end of the aquatic foodchain, and it hazardous to public health, by the determination of the pathological diagnosis of the blood. potential and its

The used material consisted of 80 specimens collected alive from Lake Edku. Plastic aquaria, contained 35 liters of sea water and 5 fish. Lead was added as a lead nitrate with concentrations of 1.0, 1.5 mg/L for 10, 20 and 30 days and 15.0 mg/L for 7 days. Blood ways taken from dorsal aorta to the determination of haemoglobin, haematocrit, red and white blood cell count. The preparation or blood smears were stained with May-Grunwald Giemsa stain

The exposure of European silver eels to lead revealed a significant decrease in haematological studies with limits; observed in control. Microscopical examination or RBCs of such poisoned fish revealed rapid and striking change amony these cells. Many of these were either in early stages of hemolysis or in advanced stages. The cells membranes were removed with only ghost remaining in some cases, these cells were enlarged, assuming various shapes, pear, avoid, amorphus or circular. The presence of the red cell hypochromic, microcytes, variable number of stippled cells, marly number of target cells with sikle cells and irregular polyloytes. irregular poikilocytes

The leukocytes are an important part of the body's defense system, therefore, after examination of the blood collected 10 days after exposure to 1.0 and 1.5 mg/L lead, showed the lymphocytes as small mononuclear cells, an abundance of both mature and immature neutrophils, small significat change occured in monocytes and eosinophils count. Lymphopellia and neutrophilia cells, noted during the experiment after 20 and 30 days in mature stage, the number of monocytes increased while the number of eosinophils mainly in could be apprendix of the statement of the stat small change

Total leukocyte count significantly decreased when exposed to 15. 0 mg/L lead and after 7 days. The responsive cell types in all experimental groups were the lympocytes, neutrophiles and monocytes.