GROWTH DYNAMICS OF SPRAT SPRATTUS SPRATTUS L. OFF BULGARIAN BLACK SEA COAST

Gueorgui DASKALOV

Institute of Fisheries. Varna, Bulgaria
Sprat shows remarkable variability in size and growth rate between years and this feature creates its specific adaptive response to changes in environment. In this study we analyse the growth of cohorts 1977 to 1990 in relation to some environmental and population characteristics. Growth was modelled on the base of monthly length-at-age data by fitting the von Bertalanffy growth function (VBGF). Growth performance index: $\phi^{\prime}=\log 10 \mathrm{k}+2 \log _{10}$ Loo 1 1) (PAULY and MUNRO, 1984) together with direct length-at-age observations were used for growth comparisons. Correlation analysis was performed on growth parameters and environmental indices (Table 1.)
Table 1. Correlation matrix of growth and environmental parameters: ϕ^{2}-growth periormance; c.f-condition factor; R-recruitment; $\mathrm{N} 1+\mathrm{Bi} 1+$-stock $\mathrm{AL} 1, \mathrm{~A} \mathrm{~L} 2$-annual increment at age 1 and 2
cond F-fishing mortality; S.l-spawning intensity ${ }^{1} ; Z 00, \mathrm{Ph}$-zoo- and phytoplancton biomass; PO4, To C.W.- phosphate concentration, water tempelure and winter cold ${ }^{2}$ in the N-W Black Sea. Significance levels: *-p=0.05; \#-p=0.01

```
#. Yosem
&10.03
0094-027
0.974 0.66 0774
-1.894015 0778: 1.00%
NLi
N2074% 604 -0.82-050%-072% 0.5%
l.
0378 0.70 0684644 0.45 -054* 0.65* 0.63
```



```
-0.02 052 -015 022 018 055% 0.25 060*-010 -035 0.32
```



```
PO4
```


1 As a relative index of interannual variability of the spawning intensity was used the average percentage of fishes with ovaries in maturity stages V and V during the peak spawning season: November - January.
Winter conditions are importants because of the positive effect of the winter convection (which particularly intensive in cold and windy winters) on bioproductivily.

An intensification of sprat tishery started in the mid 70 s on the base of rising stock abundance, due to outstanding "eutrophic" productivity of the Black Sea and reduced predatory press. After 1980, sprat biomass being hard exploited, dropped down in Bulgarian waters (PRODANOV and DASKALOV, 1992). In terms of growth, the period 977-1993 is characterized by decrease in size and relative increace in orowth rate till

-	Loo	,	\$	AL 1	1	c.f
1977	12.62	0.329	1.719	0.89	10.59	
1978	30.73	0.042	1.598	0.89	10.13	0.5
1979	1.4 .30	0.271	1.744	1.31	10.17	0.553
1980	16.85	0.145	1.615	1.04	10.67	0.587
1981	12.41	0.594	1.961	1.79	10.40	0.614
1982	12.80	9.427	1.845	1.4	10.23	0.616
1983	13.21	0.344	1.778	1.37	10.10	0.585
1984	12.02	0.544	1.895	1.44	10.27	0.588
1095	13.50	0.282	1.711	1.27	9.80	0.596
1986	12.65	0.404	1.811	1.49	9.80	0.576
1987	26.03	0.069	1.670	1.19	9.27	$0.58:$
1988	19.36	0.129	1.684	1.39	957	0.554
1989	15.34	0.330	1.733	1.57	2.06	0.568
1990	12.27	0.399	1.770	1.45	9.19	0.593

Table 2. Growth parameters of sprat

Fig. Growth curves for average cohorts
1977-80, 1981-83, 1984-86, 1987-90. 1987 when growth grow rate till 1987, when growth dramatically drops on the level of 1978 (rable length and amual increment is length and annual increment is
negative; that shows a negative; that shows a
compensatory effect of growth compensatory effect of growth
(L1 vs. $\Delta \mathrm{L} 1-\mathrm{R}=-0.78: \mathrm{L} 2 \mathrm{vs}$. (L1 vs. $\Delta \mathrm{L} 1-\mathrm{R}=-0.78: \mathrm{L} 2 \mathrm{vs}$.
$\Delta \mathrm{L} 2-\mathrm{R}=-0.69$). Significant correlations between growth parameters and abundance estumates show evidence for density dependent growth. The rate of exploitation expressed by fishing mortality coefficients (F) correlates positively with growth perfor-mance (ϕ^{\prime}): $\mathrm{R}=0.52$; annual increment ($\Delta \mathrm{LI}$): $\mathrm{R}=0.55$ and c. $\mathrm{f}: \mathrm{R}=0.66$. The spawning c... $R=0.66$. The spawning mensity is negatively reated with he abundance and posiri-vely elated winc... $\mathrm{R}=0.65$, an with growth rate. The trophic eavironment, expressed by zooand phytoplancton abundance and by phosphate concentration corelates in some degree with size. The last two indices however give very rough image of the trophic conditions because they are relevant to the Northwestern part of the sea. The same is the case with the climate indices (T^{0} and C.W.), which nevertheless show significant relation with growth within the period 1977-85. This tresses one more time the necec sity of more severe analysis of the dependence of the fishery produc ivity on climate. Although the ivity on clima. Alhough the correlations account for majority of the variation in the analysed ime series, they do not indicate Tirect relationships between them. The changes in growth of sprat can be associated mainly with the graduate reducing of the standing stock under intensive exploitation. After 1986, planctivorous invertebrates (especially the ctenophore Mnemiopsis sp.) become dominant in the pelagic community. Competition on food with fish larvae could be one possible explanation of the decrease in growth in the last years.

ACKNOWLEDGEMENTS. the present study was partly supported by the Research Suppor Scheme of the Central European University, no:18211041491-92.

REFERENCES

PAULY D and IL MUNRO, 1984 Fishbyte 2(1) $\cdot 21$
PRODANOV, K. and G. DASKALOV, 1992. Rapp. Comm. int. Mer Médir. 33: 305
Rapp. Comm. int. Mer Médit., 34, (1995).

The evolution of the sprat stock state could be devised into three main stages (Table, B. Fig.). In the years up to mid 70 's, stock biomass remains relatively low in relation with a strong predatory press. As an exception, we observe the period 1960 62 where higher abundance is probably resulting from the combination of stable recruitment and favourable environment at the end of 50 's. The second stage is characterised by a very strong increase of stock biomass and fishing from mid 70's to mid 80 's. Such an "explosion" could be related with the extinction of top predators in late 60 's and early $70^{\circ} \mathrm{s}$, and the rise of the sea trophic level due to progressive eutrophication. The combined action of two factors explains the decrease in sprat biomass after the late 70^{\prime} s. In the beginning, the high nutrient abundance resulted in amelioration of the trophic base, but soon the outstanding eutrophication created different negative effects, like hypoxia and increasing domination of gelatinous megaloplancton, which is feeding on fish eggs and larvae and compete planctivorous fish on food. The second factor is obviously the fishing effort remaining too high at the same time when the standing stock is decreasing.

REFERENCES

CHEVAILLIER, P. ct LAUREC, A, 1990. FAO Doc. Tech.Pêches. 101(4): 124 pp.
DASKALOV, G.1993. Rapport de DEA, Univ. Aix-Marseille II, OSU(COM)
IVANOV, L and BEVERTON, R.S.H., 1985. FAO Stud.Rev., 60: 135 pp .
JONES, R., 1981, FAO Fish.Circ., 734 : 57 pp .
JONES, R., 1990, J. Cons. int. Explor. Mer, $46: 130-139$
STOYANOV, S.,1966, Izv.Nauchn.Inst.Rib.Stop.Okeanogr., Varna, 6: 21-48

