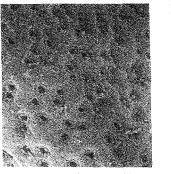
MORPHOLOGICAL FEATURES OF THE BARBELS IN MULLUS SURMULETUS AND MULLUS BARBATUS

A. LOMBARTE and H. AGUIRRE


Institut de Ciències del Mar (CSIC) P. del Mar s/n 08039, Barcelona, Spain

Mullus barbatus and Mullus surmuletus are two very important species in the fisheries of the Catalan coast (NW Mediterranean), (MARTIN, 1991). M. barbatus is found on muddy bottoms while M. surmuletus mainly lives on rocky areas, even though both species have distributions with a considerable overlap. The study of their sensory structures, specially the barbels, could bring new data about their adaptation to the trophic resources in each substratum and the way these species share the same resource.

share the same resource. The ultrastructure of the barbels surface was observed in specimens from the two species of *Mullus* (between 13 and 22 cm of total length), using SEM standard procedures, usually employed in the study of sensory cells (DALE, 1976; KOTRSCHAL, 1992). The surface of the barbels are fully covered by sensory pores (Fig. 1, 2). The structure of these pores is similar to other free chemoreceptors which are found in many groups of teleostean fishes (JANSSEN, 1990; KOTRSCHAL, 1992). The great aboundance of chemoreceptors suggests a high sensibility of the barbels in front to the chemical stimulus. The lack of neuromasts indicates a secundary importance of the mechanical stimulus.

the mechanical stimulus.
The two species are well differentiated in the density and distribution of the chemoreceptor cells. However, the pore ultrastructure is very similar in both species. *M. surmuletus* has sensory cells sparsely distributed along the surface of the barbel. Usually they are isolated or found in little groups (2 or 3 cells) (Fig. 1a, 1b). The mean pore density is 15.4 SC/100.000 µm². *M. barbatus* has sensory cells found in well defined groups. The number of pores by group oscillates between 5 or 9. (Fig. 2a, 2b). Their mean density is 26.8 SC/100.000 µm².
A hieper density of sensory cells and more complex structure in *M. barbatus*.

A higher density of sensory cells and more complex structure in M. barbatus A higher density of sensory cents and more complex structure in *M. barbatus* should be related with a higher sensibility of their barbels to chemical stimulus than in *M. surmuletus*. Since the barbels are used to search preys (UIBLEIN, 1991), a greater sensibility in *M. barbatus* could be an improvement to locate their prey in muddy bottoms, were the visibility lower than in the rocky zones.

ution Fig. 1. Ultrastructure of the structure of the surfac s; scale bar, 200 μm. be of the barbels in *I* b: ultrastructure of a M.surmuletus distrib 60 μm

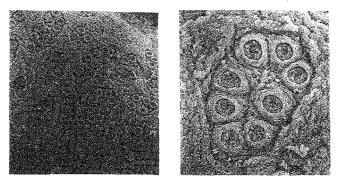


Fig. 2. Ultrastructure of the surface of the barbels in *M. barbatus*. a: distribution o cells; scale bar, 200 µm. b: Detail of a group of neuromasts; scale bar, 20 of the sensory

REFERENCES

DALE, T. 1976. The laberinthine mechanorrecepter organs of the cod *Gadus morhua* L. (Teleostei: Gadidae). *Norw. J. Zol.* 24 : 85-128. JANSSEN, J. 1990. Localization of substrate vibration by the mottled sculpin (*Cottus bairdi*). Gaddae). Norw. J. Zol. 24: 55–128.
JANSSEN, J. 1990. Localization of substrate vibration by the mottled sculpin (*Cottus bairdi*). *Copeia* (2): 349-355.
KOTRSCHAL, K. 1992. Quantitative scanning electron microscopy of solitary chemoreceptor cells in cyprinids and other teleosts. *Env. Bio. Fish.* 35: 273-282.
MARTIN, P. 1991. La Pesca en Cataluña y Valencia (NO Mediterrneo): analisis de las series historicas de captura y esfuerzo. *Inf. Téc. Sci. Mar.* 162: 3-43.
UIBLEIN, F. 1991. Outogenetic shifts in resource use and shoaling tendency related to body size in redarkary reference for Medited Multidious 12: 12: 162. red sea goatfish (Parupeneus forsskali, Mullidae). 12 : 153-161.