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Abstract

In geophysical flows, there are many instances, where turbulence is originated locally, such as in surface wave breaking at the surfzone or
by internal wave breaking in the lee of a mountain. The use of velocity structure functions and their moments may give an indication of
the spatial and time delay from the source of turbulence. The variation of the structure functions and the scaling exponents in decaying
non-homogeneous turbulence flows produced by a grid is investigated by means of sonic velocimeter SONTEK3-D. In the analysis we
invoke the concept of the Extended Self Similarity (ESS) and find that there are changes in the structure functions related to the

intermittency.
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Introduction

In recent years, new interest has emerged concerning the scaling prope-
rietes of turbulence flows. They are reflected in the scale invariance of
Navier-Stokes equations, both in two dimensions (2D) and three dimen-
sions (3D).The statistical behaviour of two-dimensional and three-dimen-
sional fully developed turbulence at large and small scales has been inves-
tigated as shown by Sreenivasan [1]. A common way to approach this pro-
blem is through the velocity structure functions. Usually the scaling pro-
perties of moments of velocity differences at the scale r S,(r) are investi-
gated using the following definition:
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where (....) stands for ensemble average and the V is the velocity compo-
nent parallel to 7. At high Reynold number, Re = U, L/v the structure func-
tion S,(r) satisties the relationship :
Sp(r) xr= (2).

For turbulence within the inertial subrange L > r >> n where the L is

the integral scale, 1) = (vJ/g)7*# is the Kolmogorov scale,
€= lquﬂ‘ > is the mean energy dissipation rate, v is the fluid kinema-
dxl [ i viscosity and U, is the mean velocity of the flow [2.3].
In general, one can define the scaling exponents &(p) of the structure
functions S,(r) in the inertial range by the relation (2), or its equivalent sca-
ling expression : (V(L)P)= (L& (e(L) ). Kolmogorov's 1941 theory (K41)[4].
predicts that the statistical properties of ov(r) depend only on € and r, it

(2.

then follows by dimensional analysis that S(p) = -’% . but in recent years

many experimental and numerical simulations at very high Re [1]. have
shown that Kolmogorov scaling is violated in the the inertial range.
Therefore, scaling exponents (p) are a nonlinear function of p [3].

From a practical point of view, the inertial range is defined by the range
of scales where the third-order structure function S; follows the K41 law:
5, = - it‘r (3).
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The larger the Reynolds number, the broader the inertial range but for
low to moderate Reynolds numbers accessible to direct numerical resolu-
tion, this range is often very narrow.

Extended Self-Similarity (ESS)

The Extended Self-Similarity is a property of the velocity structure
functions of homogeneous and isotropic turbulence. It was recognized by
Benzi et al. [2], that the moments of any order may be plotted as a func-
tion of another order, then the scaling is much more pronounced and there
seems to be self-similarity for a larger range of scales:
S, =Sn,(r) Siman)

) 4).

% . In the other words, the ratio of two scaling
S(m

exponents remains constant for a wider range of scales than when taken

separately. the reason for this behaviour is still not clear. As was show in

[6.7], the ESS scaling comprises not only the inertial range. but reaches as

far down as few Kolmogorov scales 1.

We have taken advantage of this property to compute scaling exponents
&(m.n) with higher accuracy than by spectral methods even at relatively
moderate Reynolds numbers. Another important feature of ESS that we
exploit in this paper, is that providing information in terms of the relative
scaling exponents &(m,n), is universal in geophysical flows, in the sense
that they remain valid also in 2D case [8]. But this kind of universality.
observed in different flows. disappears if the system is influenced by the
presence of strong shear as shown in experiments in wakes behind a cylin-
der [9] and in boundary layer turbulence [10].

In our study we use m = 3 and &(m) = 1 derived exactly by Kolmogorov
equation, so we determine the scaling of the modulus of any structure func-
tion with respect to the modulus of the third order structure function using
the following expression :

(]bv(r)l"> =A, (|aV(r ') ) (5).

where C(m.,n)=
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where 0V(r) = V(x+r) - V(x), and {(n) the scaling exponents of the order
n. With the resolution of our data, we were able to study the structure func-
tions up to 6th order.

The experimental apparatus

We study the structure functions and their scaling exponents in decaying
non-homogeneous turbulence produced by a grid as a model of gcophysi-
cal turbulence decaying as we move away from the source of the turbu-
lence. The turbulent velocity fluctuations in an open water flume are mea-
sured with an ultrasonic velocimeter SONTEK3-D, (Vx.Vy,Vz). The flume
has a test section with a length of 1 m, base cross-section, (.15 m, and
height, 0.3 m. The grid used had a mesh of 0.008 m with a corresponding
bar size of 0.002 m and a solidity ratio of .34 and was placed 0.06 m
downstream of the flow inlet. The mean velocity ranged between 0.04 - 0.3
(mys). The samPling volume of the sonic velocimeter SONTEK3-D was
about 5.10Y m? measured at a distance of 0.005 m to 0.008 m from the
sensor tips. The sampling frequency was 25Hz. Velocity time series were
recorded at a number of control points in the wake of the grid, all of them
were centered on the axis of simetry of the tank. at the following downs-
tream distances from the grid : X = 0.105 m, 0.155 m, 0.205 m, 0.255 m.
0.305 m, 0.355 m, 0.405 m and 0.455 m, each time series, with practical-
ly constant average mean velocity, in our experiment consisted of around
4000 samples. The velocity time series were transformed from time to spa-
tial domain, this was accomplished by means of Taylor’s hypothesis in
order to evaluate the structure functions defined in (1). It has to be noted
that in presence of large coherent structures Taylor's hypothesis is known
to give inaccurate results [11].

Experimental results

The Reynolds number Re =

mean

v

was found to vary with the

downstream distance from the

grid. Its  dependence  on 2.  where X is  the
M
distance from the grid and M is the mesh of the grid. is
=127
Re = 030{%) between Re = 11000 and Re = 71000.

The dependence of the structure functions S,,(r) with p = 2,3,4.5.6 on the
separation distance r normalized with respect to the Kolmogorov length
scale 7 is shown in Fig.1, for the downstream distance X = 40.5 ¢m. The
structure functions S,(r) are recovered from the time series by means of
the standard Taylor's hypothesis [3], as mentioned above, due to the mode-
rate to low Reynolds numbers in our experiment one can hardly find a
range where the spectrum slope remains constant so in principle we can not
determine the scaling exponents with the required accuracy. For calcula-
ting the scaling exponents for such flows, similar to those encountered in
the ocean and the atmosphere. we use Extended self-similarity (ESS), and
the structure functions S,(r) are plotted against SB:([(V(xﬂ)—V(x)){}). It
has also been verified, foﬁuwing Benzi et al. [6]. that for our data the beha-
viour S3=(/(V(x+r)-V(x))|3) scales in a similar way as: sy=|[((V(x+r1)-
V(x))}l. This possible difference due to the use of the absolute value of the
velocity signals has centered the reservations on ESS by Streenivasan [1].

S;

S3

from the grid for our 3D moderate
Reynold turbulent flow, as shown in Fig. 2. We show in Fig. 3, the structu-
re functions of order P up to 6th order

r r
versus "7 The data is the same as shown in fig.1 for values ; > 100,

We checked the relationship for different distances from downstream

with 17 = 0.008 m, there the scaling exponents could not be determined
with the required accuracy but from the representation in Fig. 3 we can
observe a much better scaling.

It was found [10] that changes of the limits of the ESS range could
influence the values of the scaling exponents, providing the main source of
error. it is then necessary to determine the limit of the scaling range. and
avoid using the fits outside the inertial subrange. so we define a uniform
criteria for the determination of the lower and the upper bounds of the ESS
range.We can take the lower bound equal to a certain multiple of the
Kolmogorov scale n.
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