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Abstract
The relationship between smoothed wind stress calculated from hourly wind data and the wind stress calculated from smoothed winds is
found to be linear, to a high degree (corrélation coefficient squared greater than 0.85). A method of estimation of smoothed stress based
on linear régression is proposed and successfully tested on 8 years of hourly winds measured at an Adriatic meteorological station.
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Introduction
Wind blowing over the sea surface is known to be an important for-

cing agent influencing sea water dynamics. In fact, it is the wind stress,
and not wind itself. that acts directly on the sea. This action is mani-
fested at various time scales. Thus. on synoptic time scale (-1-10
days) one finds numerous storm surge and related studies. Subsynoptic
(-10 day -1 month) variability also attracted some attention, especial-
ly regarding sea-level variations (e.g. [1,2. 3]). The monthly and even
longer variability is important for analysis of interannual sea-level
fluctuations {e.g. [4]). Hence, one often needs sufficiently long time
séries of averaged wind stress.

The wind stress is commonly calculated through the bulk formula:
T = pCD|u|«u

where p is air density. C D is dimensionless drug coefficient and u is
horizontal, averaged (over typically 1 hour period) wind speed vector
at some référence height (usually 10 m above the sea surface). It has
long been recognized that in order to calculate averaged stress, the
bulk formula should be applied to ihe original hourly. or at least daily.
wind values prior to averaging (sec [5]). Application of the formula to
the already smoothed wind results in significant underestimation of
the mean stress. The underestimation is ncgligible for 1-day averaging
and increases by a factor of 2 or 3 for longer periods. Obviously, due
to the nonlinear nature of the bulk formula, high-frequency variability
of the original wind cannot be ignored. Thus. two wind stresses may
be distinguished: Averaged Stress calculated from original Wind
(ASW or averaged stress) and the Stress calculated from Averaged
Wind (SAW or stress from averaged wind). The first stress, although
exact (up to the bulk formula), requires the knowledge of finely sam-
pled time history lhat is not always available. On the other hand, the
second stress is easily obtainable and physically désirable but is wrong
as the estimator of the true stress.

It is the purpose of this work to examine more closely. theoretical-
ly and practically, the relationship between the two stresses. It is
shown that. to a high degree. this relation is linear. Furthermore, it is
found that fluctuations, i.e. déviations from the overal) mean of the
ASW. can be fairly well estimated from the fluctuations of SAW and
knowledge of the overall mean and variance of the original wind. On
the contrary, the overall mean of the ASW can not be estimated in this
way. The above mentioned linearity is found also in a previous paper
[6]. regarding the calculation of mean bottom stress in the présence of
tidal current.

In Section 2 wind is modeled as a two-dimensional, Gaussian pro-
cess and theoretical results are obtained. The non-Gaussian case is
briefly discussed in Section 3 where the results are tested on 8 years of
hourly wind data recorded at Split. Croatia. Fairly good agreement is
found.

Theory
Let the wind time history be represented by a two-dimensional

Gaussian process (u(t). v(t)). For simplicity, as well as uncertainty in
the form of CD . the stress is calculated from bulk formula with
constant CD and p. Then. without loss of generality. pCD is replaced
by 1. Other forms, proposed in literature (see [7j for a review), can be
treated as well.

Let us introduce some conventions. The time variable is omitted.
The two components of wind as well as of various stresses are deno-
ted by u and v, appropriately indexed. In the same way, mean values
are denoted by m and standard déviations by o. The two basic opéra-
tions, Le. averaging and calculation of stress, are denoted by subscripts
A and S. respectively. For example. u s is u component of stress calcu-
lated from original wind. while vA S = (v A ) s is v component of stress
calculaled from averaged wind: mu is mean value of u component of

original wind, while auA is standard déviation of averaged u compo-
nent of original wind. Finally, for any variable u with mean value m,
the centered variable is denoted by u". Le. u'=u-m.

Thus. the wind vector (u,v) is supposed to possess bivariate, normal
probabilitv densitv function (PDF).
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Apparently. the variables u and v are uncorrelated. which can
always be achieved by appropriate rotation of the coordinate axes (the
simplest case of principal component transformtion, see e.g. [8]). In
the sequel, the discussion is restricted to u component only. The main
(computational) step is to examine linear relationshiDj>etween the

wind component u and corresponding stress us »"VM + V~ • u. Thus,
we may write :
u's-us-mttS~all'u<+eu, (i)

where the slope au is determined by minimizing variance of the error
term f u. At this point, for simplicity of exposition, it is assumed that
the mean values of both components are zéro, i.e. mu = mv = 0. For
convenience, two cases are distinguished: case (1) if the ratio
a1/al is si, and case (2) otherwise. Corrélation coefficient squared
between us ' and u" is calculated, by numerical intégration, as a func-
tion of u'/al in case (1) (curve no. 1 on Fig. 1), and as a function of
a/a2 i" case (2) (curve no. 2 on Fig. 1). It is always remarkably

high, i.e. greater than 0.8, except in case (2) for <j-<<(j- , when it
decreases to 0.61. In the later case, the wind is highly polarized and.
probably. may be considered as a scalar. The slope au is given by
a> ~°u Si(°;Av). incase(l).
«» = a, «, (<J ; /o; ). in case (2 ),

where the functions g| and gi are plotted on Fig. 1 (curves no. 3 and
4 respectively). Now, let us consider averaged wind uA and corTes-
ponding SAW uAS. The vector (uA.vA) is again bivariate normal. The
components uA and vA are approximately uncorrelated havïne original
mean values mu and mv, but lower variances <»i,<<^ and o;A<a: .
Hence, uA and uAS are again highly correlated, and we may write :

" 'AV-"** •«'*+<*• (3)
where the slope auA is obtained from (2) by changing o u to ouA and
ov to avA.
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Figure 1. Resufts based on normal PDF. The corrélation coefficient squared between u wind
component and corresponding stress us (curves 1 and 2). The functions g, and g2 entering for-
mula (2) for the slope (curves 3 and 4).
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