TRACE METAL CONCENTRATIONS IN EDIBLE FISHES FROM IZMIR BAY, EASTERN AEGEAN

F. Kucuksezgin*, A. Kontas, O. Altay, E. Uluturhan

Dokuz Eylul University, Institute of Marine Sciences and Technology. Inciralti, Izmir, Turkey - kucuksez@imst.deu.edu.tr

Abstract

The levels of Hg, Cd, Pb were determined in edible fish of Izmir Bay in the framework of a 'Izmir Bay Marine Research Project' during 1996-1998 supported by Izmir Metropolitan Municipality. The concentrations of trace metals found in fish varied for Hg: 5.2-829, Cd: 0.10-10 and Pb: 7.1-918 μ g kg⁻¹ fresh weight in Izmir Bay. There was no significant seasonal variation in trace metal concentrations. The relationships between Hg concentration and fork length were significant in Mullus barbatus, Pagellus erythrinus and Merluccius merluccius in the Bay. Trace metal levels were lower than the results in fish tissues reported from polluted areas of the Mediterranean Sea. Key words: Mercury, cadmium, lead, fish, Eastern Aegean

Introduction

Izmir Bay is located in the western part of Turkey and surrounded by a densely populated community. This bay has been divided into three sections (Outer, Middle and Inner) according to its physical characteristics as they relate to the different water masses. Monitoring of Hg, Cd and Pb levels in edible fishes (Mullus barbatus, Pagellus erythrinus, Merluccius merluccius, Diplodus annularis, Solea vulgaris) was conducted in Izmir Bay during 1996-1998. A number of studies have been carried out on the concentrations of trace metals in the Bay during a year with a few different species (1-3) but no long-term data are available on trace metal concentrations in the Bay during a 3 year period. The main aim of this study was to monitor levels, temporal variability and distribution of trace metals in edible fishes of Izmir Bay

Material and Methods

The locations of sampling areas are given in Figure 1. Biota samples were collected by trawling and approximately 5-7g of fish muscle was digested with HNO3:HClO4 in microwave digestion system (4). All the analyses were performed by Varian AAS. Hg concentration was measured by cold vapor technique and Cd, Pb were determined by graphite furnace and background corrections were used as required. The detection limits were Hg:0.05 μ gl⁻¹, Cd:0.10 µgl-1, Pb:0.10 µgl-1. Intercalibration fish homogenate samples (from IAEA, Monaco) were used as a control for the analytical methods. The values obtained (in $\mu g g^{-1}$ dry wt.) for the analysis of six replicates of this sample were as follows: Hg (certified 2.69±0.17; measured 2.77), Cd (certified 0.015±0.012; measured 0.018), Pb (certified 0.074±0.015; measured 0.064).

Fig. 1. The location of sampling sites.

Results and discussion

The concentrations of trace metals found in biota varied, with Hg ranging from 12-829 and 5-315, Cd from 0.10-10 and 0.44-3.1 and Pb from 14-918 and 7-713 μ g kg⁻¹ fresh weight in the Outer and Middle Bays, respectively (Table 1). High levels of trace metals were measured in Pagellus erythrinus for Hg and Cd, and in Mullus barbatus for Pb in the outer part of the Bay. Minimum values were found in Merluccius merluccius (Hg), Mullus barbatus (Cd) and Diplodus annularis (Pb) in the Outer Bay. The levels were significantly lower in Solea vulgaris than the other species from the Middle and Inner Bays. There was no significant seasonal variation in trace metal concentrations. The relationship between Hg concentration and fork length was significant in Mullus barbatus (R=0.491), Pagellus erythrinus (R=0.673) and Merluccius merluccius (0.440). Cd and Pb concentrations in muscle tissue showed no relation to fork length. A person consuming 2, 150 and 10 meals per week of edible fishes in the human diet would reach the tolerable weekly intake of Hg, Cd and Pb, respectively (5,6). As a general conclusion, the values are higher than the reported mean concentration of trace metals in marine organisms from the Aegean and Mediterranean Sea (7-9). However, the levels of trace metals determined in the different fish from Izmir Bay are considerably lower than those in polluted areas of the Mediterranean Sea (10)

References

 Uysal H. and Tuncer S., 1982. Levels of heavy metals on some commercial food species in the Bay of Izmir. C.I.E.S.M (VIes Journées Etud. Pollution, Cannes), 323-327.
Demirkurt E., Uysal H., Parlak H., 1990. The levels of heavy metals accumulation in some benthic organisms living in Izmir Bay. *Rapp. Comm. Mer. Medit.*, 32, 1:170. 3. Parlak H. and Demirkurt E., 1990. Levels of heavy metals in two demersal fishes, Arnoglossus laterna (RISSO, 1810) and Buglossidium luteum (WALBAUM, 1972) in Izmir Bay. Rapp. Com. int. Mer Medit., 32, 1:274

Sampling	Organism	Length (mm)	Number of sample	Hg	Cd	Pb
06/96	Mullus barbatus	125,153	20	250	24	010
Outor	Pagellus enthrique	250 280	20	200	2.4	02
Outer	Merluccius merluccius	260 205	2	65	1.0	15
	Diplodue appularie	130,170	10	220	2.1	1/
	Soloo vulgorio	150 220	10	150	1.6	201
Middle	Solea vulgaris Mortuopius mortuopius	109-230	4	159	1.0	20
	Diploduo oppulario	190-366	2	92	2.4	71
	Dipiodus annuians	105-142	8	315	1.9	1.
Inner	Solea vulgaris	199-210	3	00	1.8	38
10/06 Outor	Solea vulgaris	110-171	10	100	0.12	40
10/96 Outer	Nullus barbatus	110-100	10	102	0.13	12
	Dipiodus annuiaris	118-129	10	162	0.16	20
	Solea vulgaris	158-182	3	17	0.41	46
Middle	Solea vulgaris	157-188	4	22	0.44	11
01/97 Outer	Mullus barbatus	110-150	19	94	0.93	20
	Mullus barbatus	150-165	6	77	0.53	39
	Pagellus erythrinus	150-230	6	263	0.21	15
	Merluccius merluccius	260-295	2	53	0.25	1
	Diplodus annularis	135-170	10	370	1.0	31
04/97 Outer	Mullus barbatus	144-175	4	66	1.9	29
	Pagellus erythrinus	141-197	6	181	3.2	14
	Merluccius merluccius	387	1	96	4.0	45
	Diplodus annularis	126-160	10	91	4.5	17
Inner	Solea vulgaris	170-205	3	7.7	2.3	27
07/97 Outer	Mullus barbatus	111-143	10	87	3.5	78
	Mullus barbatus	206	1	399	5.7	94
	Pagellus ervthrinus	245-270	2	316	10	37
	Merluccius merluccius	365-384	4	27	1.5	43
	Diplodus annularis	118-145	20	92	17	69
Middle	Diplodus annularis	101-143	9	7/	10	16
	Solea vulgaris	161-246	12	52	1.0	36
10/97 Outer	Mullus harbatus	163-184	10	345	15	12
	Mullus harbatus	128-162	8	75	2.0	34
	Pagellus enthrique	151-218	6	360	1.2	51
	Mortuccius mortuccius	246 444	5	503	2.0	10
	Merluccius merluccius	221 205	10	10	2.0	12
	Dialadua annularia	221-200	10	12	1.0	31
	Colos unicario	100-143	10	200	1.0	42
Inner	Solea vulgaris	157-173	4	5.Z	1.3	11
	Solea Vulgaris	159-224	4	9.5		- 4
U1/98 Outer	Mullus barbatus	150-160	10	84	0.93	0
	Pagellus erythrinus	127	1	144	5.4	8
	Pagellus erythrinus	207	1	419	0.66	20
	Meriuccius meriuccius	313-361	9	17	0.48	24
	Dipiodus annularis	109-134	20	164	0.90	1/
	Solea vulgaris	220	1	46	1.2	7
Inner	Solea vulgaris	130-140	2	11	3.2	34
04/98 Outer	Mullus barbatus	130-161	8	83	1.2	35
	Mullus barbatus	114-139	10	27	0.53	25
	Pagellus erythrinus	268	1	175	0.77	8
	Merluccius merluccius	284-320	3	37	1.1	37
	Diplodus annularis	127-153	10	184	0.58	32
10/98 Outer	Mullus barbatus	140-157	10	41	0.10	4
	Mullus barbatus	168-186	9	285	0.88	47
	Pagellus erythrinus	147-152	3	279	2.2	20
	Pagellus ervthrinus	186-201	2	342	0.61	4
	Merluccius merluccius	251-273	2	34	0.58	11
	Diplodus annularie	117-144	10	174	12	50
	Coleo unicario	050	10	010	1.2	09

4. Bernhard, M., 1976. Manual Methods in the aquatic environment (Part 3). Sampling and analyses of biological material. FAO Fisheries Technical Paper No:158 and analyses or biological material. FAO Fisheries Technical Faper No:158.
5. FAO/WHO, 1972. Evaluation of certain food activities and the contaminants mercury, lead, cadmium. Sixteenth report of the Joint FAO/WHO Expert Committee on Food Additives, Geneva, World health Organization (Technical Report Series No.505).
6. UNEP, 1989. State of Mediterranean Marine Environment. MAP Technical reports

Series No.28, UNEP, Athens. 7. Aydogdu T., Balkas T., Bingel F., Salihoglu I. and Tugrul S., 1982. Mercury in some

 Aydogud T, Barkas T, Binger F, Sanhogud I, and Tugrul S., 1982. Mercury in some fish of the North +Levantine (Eastern Mediterranean). Vles Journées Etud. Pollutions, CIESM, 261-269.
IMST, 1997. D.E.U. Inst. of Marine Science&Technology, Tech. Final Reports, Izmir.
Kucuksezgin F, Altay O, Uluturhan E, and Kontas A., 2001. Trace Metal and Oregonable program bandware and Boad Multic (Multice Inchargence) for the Fortum Organochlorine Residue Levels in Red Mullet (Mullus barbatus) from the Eastern

Aegean, Turkey. *Water Research* (In Press). 10. Barghigiani C., De Ranieri S. 1992. Mercury content in different size classes of important edible species of the N- Tyrrhenian Sea. *Marine Pollution Bulletin*, Vol.24:2, 114-116.

Rapp. Comm. int. Mer Médit., 36, 2001