MUGIL CEPHALUS: COSMOPOLITAN SPECIES OR SPECIES COMPLEX?

Sandra Heras ${ }^{1} *$, María Inés Roldán ${ }^{1}$, Mariano Gonzáles Castro ${ }^{2}$ and Maria Berta Cousseau ${ }^{2}$
${ }^{1}$ Laboratori d'Ictiologia Genètica. Universitat de Girona. Campus Montilivi, E-17071. Girona, Spain. - sandra.heras@udg.es
${ }^{2}$ Laboratorio de Ictiología.Universidad Nacional de Mar del Plata. Funes 3350. 7600 Mar del Plata, Argentina.

Abstract

The cosmopolitan distribution of Mugil cephalus is under discussion at present. Morphometrics based on Landmark distances, meristics and $12 S$ rRNA (domain 1 and 2), cytochrome c oxidase subunit I (COI) and cytochrome b (cytb) mitochondrial DNA markers data from several locations worldwide are presented. Combined results indicate a global species complex in need of taxonomic revision.

Keywords : Biometrics, Genetics, Fishes, Systematics, Biogeography.

Mugil cephalus, Mugil platanus and Mugil liza form species group with close morphological relationships. According to [1] grey mullet, M. cephalus, has a worldwide distribution (51N-42 S) and M. platanus is considered as a synonymy in South American waters. Nevertheless, extreme conservative morphology of this species stands in contrast with the degree of allozimic differentiation detected at a global scale [2]. The aim of the present work is to compare the taxonomic relationships of Mugil cephalus with M. platanus and M. liza, based on a multidisciplinary approach, using meristic, morphometric and mitochondrial DNA sequencing techniques.

Tab. 1. Tamura-Nei genetic distance and standard error for each sample and gene.

	12 S rNA-1	$12 \mathrm{SrNA}-2$	COI	Cytb
Med-USA	0.0170 ± 0.0059	0.0163 ± 0.0061	0.0414 ± 0.0077	0.0586 ± 0.0107
Med-Miya	0.0101 ± 0.0046	0.0201 ± 0.0070	0.0269 ± 0.0077	0.0574 ± 0.0100
USA-Miya	0.0274 ± 0.0079	0.0201 ± 0.0071	0.0420 ± 0.0082	0.0576 ± 0.0104
M.pl/M.ili-Med	0.0139 ± 0.0052	0.0168 ± 0.0057	0.0229 ± 0.0053	0.0479 ± 0.0091
MpiMM $/ 2$-USA	0.0289 ± 0.0082	0.0253 ± 0.0073	0.0325 ± 0.0066	0.0498 ± 0.0090
MpliMli-Miya	0.0243 ± 0.0071	0.0269 ± 0.0077	0.0248 ± 0.0059	0.0406 ± 0.0079

Samples of M. cephalus were collected from the Mediterranean (Med), the western Atlantic (USA); M. platanus' from South America, and M. liza from the Caribbean. Twenty-one morphometric variables were taken as interlandmark distances of involved species. Meristic data were also considered for each specimen following [3]. Genetic analysis of $12 S$ rRNA (domain 1 and 2), cytochrome c oxidase subunit I (COI) and cytochrome b (cytb) were carried out following [4] and using GenBank M. cephalus sequences as reference. Phylogenetic relationships were inferred by neighbor-joining analysis based on Tamura-Nei model.

Fig. 1. Neighbor-Joining tree based on Tamura-Nei distance. M. cephalus from the Mediterranean (empty circle), USA (solid circle) and Genbank reference (triangle) and M. platanus/ M. liza (square).

The interlandmark distances showed differentiation between the individuals of M. platanus and M. cephalus analysed. The number of lateral scales differentiated M. liza, M. platanus and M. cephalus being a diagnostic character in meristic analysis. However, the high genetic closeness detected between M. platanus and M. liza haplotypes and shared haplotypes did not support species level differentiation. Besides, the distances
detected among M. cephalus samples overlapped with values shown between M.pl/ M.li and M. cephalus (Table 1). Phylogenetic trees had similar topology for all molecular markers (Figure 1). Although a monophyletic group for M.pl/ M.li was detected, it was included in M. cephalus lineage.

This evidence coupled with [2] suggest that the cosmopolitan distribution of M. cephalus should be reconsidered and new levels of species assignation are expected.

References

1 - Thomson, J.M., 1997. The Mugilidae of the world. Mem. Queensl. Mus. 41, 457-562.
2 - Rocha-Olivares, A., Garber, N.M., Stuck K.C., 2000. High genetic diversity, large inter-oceanic divergence and historical demography of the striped mullet. J. Fish Biol. 57, 1134-1149.
3 - Cousseau, M.B., González Castro, M., Figueroa, D.E. and A.E. Goztomyi. 2005. Does Mugil liza Valenciennes 1836 (Teleostei: Mugiliformes) occur in Argentinean waters? Rev. Biol. Mar. Ocean. 40, 133-140.
4 - Heras, S., González Castro, M. \& Roldán, M. I. 2006. Mugil curema in Argentinean waters: combined morphological and molecular approach. Aquaculture, http://dx.doi.org/10.1016/j.aquaculture.2006.07.003.

