CONCENTRATIONS OF ²¹⁰PO AND ²¹⁰PB IN PLANKTON FROM DIFFERENT ZONES OF AEGEAN SEA

Fatih Dursun Arslan¹, Aysun Ugur¹ and Banu Özden¹*

¹ Ege University, Institute of Nuclear Sciences - banu.ozden@ege.edu.tr

Abstract

Aquatic organisms are capable of concentrating toxic elements within their tissues. In the study, plankton samples have been evaluated for their bioavailability as biomonitors of ²¹⁰Po and ²¹⁰Pb in Aegean Sea. The concentrations of ²¹⁰Po and ²¹⁰Pb in plankton samples collected in the period of 2004-2005 have been presented. The samples were collected from four distinct regions (Aliaga, Nemrut, Foça and Izmir Bay). The concentrations of ²¹⁰Po and ²¹⁰Pb in plankton samples were determined using alpha spectrometry.

Keywords: Plankton, Aegean Sea, Monitoring

 210 Po and 210 Pb are naturally occurring radionuclides within the 238 U decay chain, with half-lives of 138.38 days and 22.3 years, respectively. These radionuclides areconsidered as an important source of internal radiation dose to marine organisms [1]. Planktons can accumulate radionuclides very rapidly and retain them for a long time [2]. ²¹⁰Po level increases with additional material derived from coastal erosion, particulate matter flux from atmosphere and biogenic activity within the aquatic environment. The main source of ²¹⁰Po in these study regions is the river run-off (Bakirçay and Gediz) from the catchment areas. Wastes which arise from petrochemical and fertilizer industries at Aliaga region effect the contamination in the regions. In our project supported by IAEA, ²¹⁰Po concentrations in fish species fed with planktons were determined much higher than the average values [3]. Significant amounts of ²¹⁰Po may be transferred to humans via diet. For these reasons, there is a need for investigation of the accumulation of ²¹⁰Po and ²¹⁰Pb by planktonic organisms. All the sampling stations (Aliaga, Nemrut, Foça and Izmir Bay) are located on the western coast of Turkey and indicated in Figure 1.

Fig. 1. The map of sampling location

Plankton species were present in a very wide size range. The cut off sizes used for sample collection in this work (45 µm and 120 µm) were selected to characterize two size classes. Then the samples were weighed and dried in the oven. After standard addition ofpolonium tracer, each sample was completely dissolved with HNO₃, H₂O₂ and HCl. Polonium was spontaneously plated onto a copper disc in 0.5 M HCl in the presence of ascorbic acid to reduce of Fe⁺³ to Fe⁺² [4,5]. Measurements of ²¹⁰Po were realized through its 5.30 MeV alpha particle emission, using ²⁰⁸Po (95±1.311 mBq g⁻¹) as the internal tracer. After the first deposition of ²¹⁰Pb, the residual 0.5 M HCl was kept to allow the samples. The sample was re-plated and the ²¹⁰Po activity was determined. ²¹⁰Pb (precursor of ²¹⁰Po) concentrations were determined from ²¹⁰Po activities measured after attaining the radioactive equilibrium. The range of ²¹⁰Po concentrations in plankton samples were observed between 10±2 -

 207 ± 23 Bq kg⁻¹(dw). According to obtained results, the concentrations of 210 Po in industrial regions are higher than other regions. Petrochemical industry on the coast of Aliaga is an agent for high level of natural radionuclide in the region. The relationship between 210 Po concentrations and biomass of plankton was found nonlinear.

References

1 - Ugur, A., Yener, G., and Bassari, A., 2002, Trace metals and ²¹⁰Po(²¹⁰Pb) concentrations in mussels (*Mytilus galloprovincialis*) consumed at western Anatolia, Applied Radiation and Isotopes, 57, 565-571.

2 - Parfenov, Yu. D., 1974, Polonium-210 in The Environment and in The Human Organism, At. Energy Rev., 12(1), Institute of Biophysics of The USSR Ministry of Health, Moscow, Union of Soviet Socialist Republics, 75-143.

3 - ²¹⁰Po and ²¹⁰Pb In Marine Ecosystem of Aegean Sea Turkish Coast, International Atomic Energy Agency, IAEA Research Contract No: 302-K4.00.24-TUR-12641, B5-TUR-31834.

4 - Flynn W.W., 1968, The Determination of Low Levels of Polonium-210 in Environmental Materials, Anal. Chim. Acta., 43, 221-227.

5 - Ugur, A., 1998, Gökova Körfezi Deniz Sediment Korlarinda Radyoaktif Pb, Po, Ra, Cs, Am ve Pu Izotoplarinin Dagiliminin Incelenmesi, Sediment Hizi ve Tarihleme Çalismalarinda Kullanilmasi, E.Ü. Fen Bil. Nükleer Bil. ABD, Doktora Tezi.