I-129 LEVELS IN MARINE ENVIRONMENT ALONG THE SLOVENIAN COAST

Andrej Osterc 1* and Vekoslava Stibilj 1

¹ Institute Jožef Stefan - andrej.osterc@ijs.si

Abstract

¹²⁹I is considered as a global pollutant and its role as a global tracer to follow the dissemination of radionuclides from a source point such as nuclear power reprocessing plants increases. A radiochemical neutron activation analysis method was developed to measure the concentration of ¹²⁹I in environmental and biological samples. The method was validated using the IAEA-375 Soil, FC98 Seaweed and NIST 4357 Ocean Sediment. The method was applied to analyze ¹²⁹I/¹²⁷I isotopic ratios in the marine environment of Slovenia. The results found were in the range from 1.3 to $55.4 \cdot 10^{-9} \,\mu q \, g^{-1}$ for seawater, from 104 to $127 \cdot 10^{-9} \,\mu q \, g^{-1}$ for blue mussel, from 334 to $471 \cdot 10^{-9} \,\mu q \, g^{-1}$ for alga *Fucus virsoides* and from 72 to $256 \cdot 10^{-9} \,\mu q \, g^{-1}$ for marine sediment. *Keywords: Algae, Coastal Waters, Fallout, Radionuclides, Sediments*

1 Introduction

The only stable natural iodine isotope is ^{127}I and the total amount of this element in the Earth's crust was estimated to be $8.6\cdot10^{15}$ kg of which nearly 70 % resides in marine sediments and 28 % in sedimentary rocks. The marine environment, i.e. the oceans, is the major source of iodine with average concentrations of around $60\,\mu g~L^{-1}$ iodine in seawater. The biogeochemical cycling of iodine is driven with its volatilization from oceans and soil to the atmosphere in the form of iodinated hydrocarbons of which methyl-iodide predominates. From the atmosphere the iodine is washed out to the marine and terrestrial environment by wet (precipitation) and dry (aerosol) depositions [1].

¹²⁹I ($T_{1/2} = 1.57 \cdot 10^7$ years) is the only natural radioactive isotope of iodine, which is formed in nature by two processes. The cosmogenic ¹²⁹I is produced in the atmosphere by the interaction of cosmic rays with xenon isotopes and the fissiogenic ¹²⁹I by spontaneous fission of uranium in the lithosphere. For the pre-nuclear era (no addition of anthropogenic ¹²⁹I to the environment) an ¹²⁹I/¹²⁷I isotopic ratio of about 1.5 · 10 ⁻¹² has been estimated. The quantity of ¹²⁹I in the pre-nuclear age ocean was ~100 kg. Since 1945 anthropogenic production of ¹²⁹I started which shifted the natural isotopic ratio for 3 to 6 orders of magnitude in favour of ¹²⁹I.

The main sources of ¹²⁹I are nuclear fuel reprocessing plants.

To our knowledge the ¹²⁹I level has not been measured in any biological or environmental sample from the Mediterranean area (Adriatic Sea). The aim of our work was to investigate the distribution of ¹²⁹I in the marine environment of Slovenia.

2 Methodology

2.1 Sampling and preparation

First sampling of alga (*Fucus virsoides*) and sediment was performed in 2005 and another sampling in 2009 including seawater, alga (*Fucus virsoides*) and blue mussel (*Mytilus galloprovincialis*). Alga and blue mussel were dried by freeze dryer to constant mass and homogenized. Seawater and sediment samples were analysed as collected.

2.2 Determination of ¹²⁹I and ¹²⁷I

Radiochemical neutron activation analysis method (RNAA) was used for the determination of ¹²⁹I [2] and ¹²⁷I [3] in environmental samples. Environmental samples contain very low amounts of ¹²⁹I therefore pre-concentration of iodine from up to 100 g of alga, blue mussel and sediment and up to 8 L of seawater are needed. Irradiation of sample, combustion in an oxygen atmosphere and extraction of iodine with CHCl₃ followed. Induced radioisotopes were measured on a HPGe detector. The chemical yield for the whole procedure was determined spectrophotometrically and by using the ¹²⁶I activity.

3 Results and Discussions

The method was applied to analyze ¹²⁹I/¹²⁷I isotopic ratios as well as ¹²⁹I and ¹²⁷I concentrations in the marine environment of Slovenia. The results found for analysed samples collected in 2005 and 2009 are summarised in Table 1. There are no literature dates for ¹²⁹I and ¹²⁷I concentrations in blue mussel. Values found in analysed seawater and sediment samples are in agreement with

values found in literature for areas that are not under the influence of direct liquid discharges of ¹²⁹I from nuclear fuel reprocessing plants. ¹²⁹I and ¹²⁷I concentrations found in analysed alga collected in 2005 and 2009 (Table 1) are in the same range. The ratio of ¹²⁹I/¹²⁷I found for alga *Fucus virsoides* is up to 10^{-9} , which is one order of magnitude higher than along the coast of China, up to two orders of magnitude lower than in the Baltic Sea, which is influenced by direct liquid discharges from La Hague and Sellafield, and up to four orders of magnitude lower than in the vicinity of the La Hague reprocessing plant.

Tab. 1. Range of ¹²⁹I and ¹²⁷I in marine environment of North Adriatic Sea

Number of samples	Year of . sampling	Range	
		¹²⁷ l (µg g ⁻¹ dry weight)	¹²⁹ l (10 ⁻⁹ µg g ⁻¹ dry weight)
6	2009	0.052 - 0.070	1.3 – 55.4
3	2009	267 – 470	334 – 452
5	2005°	371 – 448	362 – 471
3	2009	9.9 - 14.6	104 – 127
4	2005	59.3 - 76.8	72 – 256
	Number of samples 6 3 5 3 3 4	Number of samples Year of sampling 6 2009 3 2009 3 2009 3 2009 3 2009 4 2009	Number samples Year of sampling Ran 127 (µg g ⁻¹ dry weight) 6 2009 0.052 – 0.070 3 2009 267 – 470 5 2005 ^a 371 – 448 3 2009 9.9 – 14.6 4 2005 59.3 – 76.8

^apublish ed in 2008 [4]

The data of this study represent a survey of ¹²⁹I in the marine environment of Slovenia. The most likely source of ¹²⁹I are nuclear fuel reprocessing plants in La Hague and Sellafield, which are known to be the major sources of ¹²⁹I in the environment of North Europe. ¹²⁹I is transferred to the atmosphere and washed out to the marine environment of Slovenia by precipitation, so it is of atmospheric-precipitation origin.

References

1 - Muramatsu Y., Yoshida S., Fehn U., Amachi S. and Ohmomo Y., 2004. Studies with natural and anthropogenic iodine isotopes: iodine distribution and cycling in the global environment. *J. Environ. Radioact.*, 74: 221-232.

2 - Osterc A., Jacimovic R. and Stibilj V., 2007. Development of a method for ¹²⁹I determination using radiochemical neutron activation analysis. *Acta Chim. Slov.*, 54: 273-283.

3 - Osterc A. and Stibilj V., 2005. Measurement uncertainty of iodine determination in radiochemical neutron activation analysis. *Accredit. qual. assur.*,10:235-240.

4 - Osterc A. and Stibilj V., 2008. ¹²⁷I and ¹²⁹I/¹²⁷I isotopic ratio in marine alga *Fucus virsoides* from the North Adriatic Sea. *J. environ. radioact.*, 99: 757-765.