MICROFOULING COMMUNITY IN BAY OF CARTHAGE (NORTHERN TUNISIA) : PRELIMINARY IDENTIFICATION AND BIOACTIVE PROPERTIES

Wafa Cherif¹, Leila Ktari¹*, Ons Dali Yahya - Kefi² and Monia El Bour¹ ¹ INSTM: 28, Rue 2 mars 1934 Salammbo 2025 Tunisie - leila.ktari@instm.rnrt.tn ² INAT: 43, Avenue Charles Nicolle 1082 Cité Mahrajéne Tunisie

Abstract

Marine bio-fouling concerns any immersed structure. In order to specify fouling mechanism, we studied microbial communities and bioactive interactions for biofilms obtained from an experimental disposal.

Keywords: Fouling, Bacteria, Diatoms, Biodiversity

Introduction

In seawater, immersed structures rapidly accumulate colonising organisms that may range from microscopic bacteria to larger larvae or invertebrates. The first stage of this biofouling consists on a biofilm formed by unicellular organisms specially bacteria and microalgae [1]. Thus, we focused on these microfouling communities formed on an immersed experimental system to analyse biodiversity and potential biological activities.

Methods

Bacteria and microalgae were isolated from immersed steel and glass plates disposed in a shallow marine site (Bay of Carthage – northern coast of Tunisia) [2]. *Identification:* Bacteria strains were specified basically on cultural, morphological and biochemical identification while morphological identification of fouling microalgae was realised on the basis of microscopic observations. *Antagonism test :* Disc diffusion method [3] was used to detect the potential antagonistic effect of all isolates against 15 sensitive bacteria including fish and human pathogens.

Results and discussion

A group of thirty one bacterial strains were isolated with predominance of Gram negative (58%) mainly *Aeromonas hydrophila and Pseudomonas vesicularis* (Table1).

Tab. 1. Isolated microorganism from steel and glass plates.

Identified bacteria	Identified
	microalgae
Weeksella virosa;	Licmophora sp.; L.
Shezanella putrefaciens;	dalmatica; L. anglica;
Chryseobacterium	Nitzschia sp.; N.
maningosepticum;	frustulum; Ñ. palea; N.
Brevundimonas	dissipata; N.
vesicularis;	longissima; N.
Staphylococcus	angularis;
Epidermidis;	Synedra sp.; S.
Aaeromonas hydrophyla;	barbatula; S. pulchella;
Staphylococcus xylosus;	Grammatophora sp.; G.
Pantoea spp.;	oceanica;
Pseudomonas putida;	Peronia erinacea;
Chryseobacterium	Surirella sp.;
indologenes ;	Pleurosigma sp.;
	Fragilaria sp.;
	Navicula sp

Besides, 19 different species of microalgae, all diatoms, were identified with dominance of: *Licmophora* and *Nitzschia*.

Antagonism test revealed interesting activities for one specie: *Chryseobacterium indologenes* with large spectrum of activity mainly against *Staphlococcus aureus* (Table 2).

Tab.	2.	Antagonistic	activity	of	fouling	bacteria Chryseobacterium
indolo	ogene	es against patho				

Test strains	Inhibition zone (mm)
Escherichia coli O126B16	12
Staphylococcus aureus	35
ATCC 25923	
Salmonella typhylium	10
E. coli ATCC25922	7
Enterococcus fecalis ATCC	traces
29212	

Results obtained were in accordance with previous studies, particularly for the predominance of *Pseudomonas sp.* [4] in the bacterial community and *Licmophora sp.* for microalgae [5].

Further experimentations are in progress for molecular speciation of producers.

References

1 - Haras D., 2005. Biofilms et altérations des matériaux de l'analyse du phénomène aux stratégies de prévention. *Matériaux & Techniques* 93 : 27–41.

2 - Rubio C., 2002. Compréhension des mécanismes d'adhésion des biofilms en milieu marin en vue de la conception de nouveaux moyens de prévention. Thèse de l'université Paris VI. 216p.

3 - Lemos M.L., Toranzo A.E. and Barja J.L., 1985. Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. *Microb Ecol.*, 11: 149-163.

4 - Holmström C., Egan S., Franks A., McCloy S. Kjelleberg S. 2002. Antifouling activities expressed by marine surface associated *Pseudoalteromonas* species. *FEMS Microbioloy ecology* 41:47-58.

5 - Mitbavkar S., Anil A.Ch., 2008. Seasonal variations in the fouling diatom community structure from a monsoon influenced tropical estuary. *Biofouling*, 24: 415-426.