COMPARATIVE FATTY ACIDS PROFILES OF *FLEXOPECTEN GLABER* DIGESTIVE GLAND UNDER STARVATION AND MONOALGAL DIET CONDITIONS

K. Telahigue ¹*, I. Chetoui ¹, I. Rabeh ¹, M. S. Romdhane ² and M. El Cafsi ¹

¹ Faculté des sciences de Tunis - k_telahigue@yahoo.fr

² Institut National Agronomique de Tunisie

Abstract

The starvation effects on the fatty acids composition of the digestive gland of the scallop *Flexopecten glaber* were underwent in this study. Results show that food deprivation induces a diminution of the amounts of the EPA (C20:5*n*-3) and the DHA (C22:6*n*-3) as well as the n-3/n-6 ratio. Meanwhile, a selective retention, in terms of increase of percentage, of the AA (C20:4*n*-6) in unfed specimens is recorded.

Keywords: Aquaculture, Bivalves, Physiology

Introduction

In scallops, the digestive gland is the most important organ involved in lipids reserve storage [1, 2]. The fatty acids composition of the digestive gland essentially depend on the food availability [3]. In this study we compared the fatty acids profile of the digestive gland of *Flexopecten glaber* under two nutritional conditions to asses the effects of the food deprivation on fatty acids composition of this organ.

Materiel and Methods

Tow groups of 6 individuals of *F. glaber* were acclimated for 3 weeks at constant temperature $(15^{\circ}C)$ and salinity (35 psu). The first lot was fed a monoalgal diet based on *Isochrysis galbana*; whereas the second group was starving. Total lipids were extracted according to the Folch method [4]. Fatty acid methyl esters were obtained according to [5] and analyzed by a HP 6890 gas chromatograph. Statistical analyses were carried out using the software-program Statistica 6.0. Data were analyzed for significant differences of means and inspected by Duncan test at the level of 5%.

Results and discussion

Results, reported on the table 1, show that under food deprivation the Saturated Fatty Acids decrease in general; the most pertinent diminutions concern, however, the Myristic acid (C14:0), the Palmitic acid (C16:0) and the Stearic acid (C18:0). Also, under the same starvation condition, a significant decrease of the n-3 polyunsaturated fatty acids is recorded (from 23.45% in the fed lot to 7.52% in the unfed lot). Oppositely, an elevation of the n-6 polyunsaturated fatty acids is observed (from 4% to 19.42% respectively). Consequently, the deprivation effect is the decrease of the n-3/n-6 ratio. Within the Polyunsaturated Fatty Acids decrease trend, the most important starvation effects are observed for EPA (C20:5n-3) and DHA (C22:6n-3) amounts. Contradictory, the amount of AA (C20:4n-6) is maintained at significantly higher level. This phenomenon of selective retention of the ALA, which is involved in the prostaglandin synthesis [6], would correspond to a survival strategy and a mean to stand starvation stress adopted by the mollusk. Similar results were recorded in neutral lipids of starved mussels [7].

Tab. 1. Fatty a	cids percentages in the	e digestive gland of F. glaber starving and
fed on monalg	al diet conditions. S	FA: total saturated fatty acids; ΣMUFA:
total monounsa	aturated fatty acids; Σ	PUFA: total polyunsaturated fatty acids
Fotty opida	Digestive gland	

Fatty acids	Digestive gland		
54 E	Starving	Fed	
	Mean ±S.D	Mean ±S.D	
C14:0	3.46±0.14	7.19±0.28	
C14:1	0.81±0.09	0.40±0.01	
C15:0	2.57±0.17	1.89±0.01	
C15:1	2.09±0.26	1.01±0.04	
C16:0	3.67±0.34	19.16±0.82	
C16:1n-9	0.31±0.03	2.54±0.03	
C16:2	0.33±0.05	0.57±0.02	
C17:0	0.28±0.03	0.56±0.01	
C16:3	0.88±0.21	1.31±0.01	
C16:4	1.14±0.12	1.81±0.01	
C18:0	1.23±0.16	18.47±0.47	
C18:1 <i>n</i> -9	0.40±0.06	2.18±0.18	
C18:1 <i>n</i> -7	-	1.80±0.02	
C18:2 <i>n</i> -6	0.34±0.04	0.64±0.01	
C18:3 <i>n</i> -3	0.20±0.04	0.70±0.01	
C18:4 <i>n</i> -3	0.20±0.03	2.24±0.08	
C20:0	0.13±0.03	1.27±0.18	
C20:1	0.10±0.01	1.24±0.12	
C20:2 <i>n</i> -6	0.20±0.02	0.15±0.11	
C20:3 <i>n</i> -6	0.49±0.06	0.62±0.29	
C20:4 <i>n</i> -6	3.85±0.41	1.82±0.37	
C20:3n-3	0.20±0.01	0.22±0.04	
C20:4n-3	0.38±0.03	3.00±0.23	
C20:5n-3	0.40±0.04	7.08±0.25	
C22:0	0.34±0.02	0.40±0.11	
C22:1	0.54±0.07	-	
C21:5	0.32±0.12	0.23±0.02	
C22:2 <i>n</i> -6	0.08±0.03	0.18±0.08	
C22:3 <i>n</i> -3	0.15±0.10	0.73±0.13	
C22:5 <i>n</i> -3	0.13±0.04	0.29±0.03	
C22:6 <i>n</i> -3	0.28±0.11	5.78±0.75	
∑SFA	45.90±1.55	57.26±2.16	
∑MUFA	16.68±0.26	10.72±0.25	
∑PUFA	37.42±1.37	32.02±1.91	
∑ <i>n-</i> 3	7.52±0.76	23.45±1.77	
∑n-6	19.42±0.23	4.00±0.13	
n-3/n-6	0.39±0.03	5.86±0.25	
0.000000	0.0010.00	0.0010.20	

References

1 - Le Pennec G., Le Pennec M., and Beninger P., 2001. Seasonal digestive gland dynamics of the scallop *Pecten maximus* in the Bay of Brest (France). *J. Mar. Biol. Assoc. UK.*, 81 (4): 663-671.

Pazos A. J., Sanchez J. L., Roman G., Pérez-Prallé M. L., and Abad M., 2003. Seasonal changes in lipid classes and fatty acid composition in the digestive gland of *Pecten maximus. Comp. Biochem. Physiol.*, 134 B: 367–380.
Silina A. V., and Zhukova N. V., 2007. Growth variability and feeding of scallop *Patinopecten yessoensis* on different bottom sediments: evidence from fatty acid analysis. *J. Exp. Mar. Biol. Ecol.*, 348: 46–59.

4 - Folch J., Less M., and Sloane-Stanley C.H., 1957. A simple method for the isolation and purification of total lipids from animal tissues. *J. Biol. Chem.*, 266: 497–509.

5 - Cecchi G., Basini S., and Castano C., 1985. Méthanolyse rapide des huiles en solvant. *Revue française des corps gras* n4.

6 - Nomura T., Ogata H., and Lucas A., 1979. Mise en évidences des prostanglandines chez les mollusques bivalves. *Rev. Int. Océanogr. Med.*, 53/54: 87–94.

7 - Pirini M., Manuzzi M.P., Pagliarani A., Trombetti F., Borgatti A.R., and Ventrella V., 2007. Changes in fatty acid composition of *Mytilus galloprovincialis* (Lmk) fed on microalgal and wheat germ diets. *Comp. Biochem. Physiol.*, 147B: 616–626.