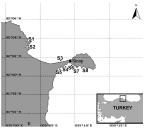
HARD-BOTTOM MACROZOOBENTHIC INVERTEBRATES AND MACROPHYTA OF SINOP COASTS IN THE BLACK SEA


Murat Sezgin ¹, Levent Bat ^{1*} and Fatih Sahin ¹ ¹ Sinop University Fisheries Faculty - leventbat@gmail.com

Abstract

The aim of the present study was to describe the hard-bottom macrozoobentic invertebrates and macrophyta along the coasts of the Sinop Peninsula, Black Sea during May in 2013.

Keywords: Zoobenthos, Black Sea, Phytobenthos

Introduction: The Black Sea is the most isolated marine environment among all inland seas of the world, whose only tenuous link with other seas is with the Mediterranean through the narrow Turkish straits system. A relatively diverse marine fauna occurs in the Black Sea, despite its low salinity (17‰) and anoxic waters below depths of 180 m (with high levels of H₂S). Of the 3,800 fauna and flora species identified from the Black Sea, 42.9% belongs to fungi, algae and higher plants, 52.5% to invertebrates, 4.5% to fishes and 0.1% to marine mammals [1]. The benthos researches of the Turkish Black Sea coast have generally been focused on the sandy bottoms. There are few scattered studies due to numerous difficulties in collecting the quantitative samples. Material Method: Hard-bottom benthic macroorganism surveys were carried out, along the Sinop coasts (Fig. 1) during May in 2013. In order to analyze the benthic fauna related to the biocenosis of rocky habitats from shallow waters, 8 qualitative samples were taken by free diving during May 2013, from 8 stations along the Sinop Bay coast. Scraping technique is commonly employed to sample hard-bottom communities (animals and algae) with divers [2]. Three samples were taken from each station at depths 0 and 1m by scraping out the organisms from an area of 400 cm² with the help of a metal quadrate (20x20) and a spatula The scrape areas were chosen at random. The scraped biological samples were stored in a classic net; its hatch would close through a binder in order to prevent the loss of the samples in the water. The taxonomic identification was performed in its totality for the species.

Fig. 1. Map of study area and sampling stations

Results and Discussion: A total of 42 species of hard-bottom macrobenthic species were identified. Table 1 shows species list of hardbottom zoobenthic invertebrates obtained at May in 2013. During the diving surveys, based on the qualitative analysis, 13 taxa algae were identified. They are; Chlorophyta (Cladophora laetevirens, Cladophora fracta, Cladophora glomerata, Cladophora sericea, Rhizoclonium tortuosum, Ulva intestinalis); Rhodophyta (Ceramium virgatum, Laurencia obtusa, Lomentaria clavellosa, Parviphycus antipai, Polysiphonia fucoides, Phyllophora crispa); Heterokontophyta (Cystoseira crinita). The results of the faunistic and floristic analysis of the shallow-water rocky epibiont populations (0-1m), of the coastal sector of Sinop Bay, enabled us to highlight the following general conclusions: The qualitative diversity of the shallow-water rocky habitat populations is dominated by the crustaceans that include over 20 euconstant species forming a mature epibiont system. The analysis of populations' structure on specific taxonomic groups shows that the qualitative differences among the two levels of depth (0 and 1) are very reduced, and the biodiversity, slightly higher at the depth of 1 m. In spite of these taxonomic observations, the hard-bottom communities of the Black Sea is complicated, it is necessary to consider the developmental stage of various of the taxa here at issue, in order to reach the precise conclusions.

Tab.	1.	Species	list	and	abundance	$(ind.m^{-2})$	of	hard-bottom	zoobenthic	
invertebrates										

Taxonomic Groups	STATIONS									
	S1	S2	S3	S4	S5	S6	S7	S8		
POLYCHAETA										
Eteone sp.		50			50		25			
Hediste diversicolor	275	50	825	325	775	1025	550			
Platynereis dumerilii		50		100		300		25		
Polyophthalmus pictus	25		75		25	25				
Nereis zonata	525		425		300	125	275	125		
Perinereis cultrifera	150		125	125	125		25			
Syllis armillaris	275	175	175	25		25		25		
CRUSTACEA										
Alpheus sp.			25		175			275		
Ampithoe ramondi	125	250	175	225	150	175	625	325		
Apherusa bispinosa		50						50		
Athanas nitescens	25	25	125	350	200	25	550			
Caprella liparotensis				250		25	300	325		
Dexamine spinosa	475									
Ericthonius brasiliensis	550	575	1000	200		200	475	500		
Ericthonius punctatus			50							
Gammarellus angulosus							100	325		
Hyale crassipes	50									
Hyale pontica		300	25							
Idotea balthica	150	50		25	25	100				
Jassa marmorata	5025	100	500	275	50	525	800	5600		
Jassa ocia	0020	25	75	210		75	100			
Leptochelia savignyi		525	525	125	50	125	300	-		
Melita palmata	275	950	625	1750	900	2050		425		
Microdeutopus gryllotalpa		300	020			2000				
Monocorophium acherusicum	150	000	175	400	125	275	300	300		
Monocorophium insidiosum		750	125	100	120	375				
Pachygrapsus marmoratus		100	50	175		50		25		
Palaemon elegans				75		50		20		
Pilumnus hirtellus		75	25	250	100	125		125		
Pisidia bluteli		50	20	200	100	120		120		
Pisidia longicornis		75	25	475	275	175	25	200		
Siriella jaltensis		25	25	475	215	175	25	200		
Stenothoe monoculoides	650	1125	6250	1200	525	2325	1175	350		
Synisoma capito	25	1125	0230	1200	525	2525	1175	25		
Xantho poressa	25			100	50	25		25		
MOLLUSCA					50					
	625	825	1025	575	300	25		112		
Mytilus galloprovincialis Mytilaster lineatus	_		1025		300	25 275	1100			
	300	850 75	-	525		213	1100	300		
Rapana venosa	50		275	25	1105	75	50	25		
Rissoa splendida	50	525	375	0075	1125	75	50	400		
Tricolia pullus pullus	5325	1400	4450	3375	1950	075	2450			
Bittium reticulatum	1625		1150	575	600	275	1900	282		

References

 I - Zaitsev Yu., Mamaev V. 1997. Marine Biological Diversity in the Black Sea: A Study of Change and Decline. GEF Black Sea Environmental Programme. United Nations Publications, New York, 208 pp.

2 - Kirkim F., Sezgin M., Katagan, T., Bat L., Aydemir E. 2006. Some Benthic Soft-Bottom Crustaceans along the Anatolian Coast of the Black Sea. Crustaceana, 79 (11): 1323-1332